Load libraries

library(Seurat)
library(princurve)
library(monocle)
library(gprofiler2)
library(seriation)
library(Matrix)
library(dplyr)
library(RColorBrewer)
library(ggplot2)
library(ggExtra)
library(cowplot)
library(wesanderson)

#Set ggplot theme as classic
theme_set(theme_classic())

Load the full dataset

Hem.data <- readRDS("../QC.filtered.clustered.cells.RDS")
DimPlot(object = Hem.data,
        group.by = "Cell_ident",
        reduction = "spring",
        cols = c("#ebcb2e", #"CR"
            "#e7823a", #"ChP"
            "#4cabdc", # Chp_prog
            "#68b041", #"Dorso-Medial_pallium" 
            "#e46b6b", #"Hem" 
            "#e3c148", #"Medial_pallium"
            "#046c9a", # Pallial
            "#4990c9"#"Thalamic_eminence"
                     )
        )

Hem.data$Lineage <- sapply(Hem.data$Cell_ident,
                              FUN = function(x) {
                                if (x %in% c("Cajal-Retzius_neurons", "Hem")) {
                                  x = "Cajal-Retzius_neurons"
                                } else if (x %in% c("Pallial_neurons", "Medial_pallium")) {
                                  x = "Pallial_neurons"
                                } else if(x %in% c("ChP", "ChP_progenitors")) {
                                   x =  "Choroid_Plexus"
                                } else {
                                  x = "other"
                                  }
                              })
DimPlot(Hem.data,
        reduction = "spring",
        group.by = "Lineage",
        pt.size = 1,
        cols =  c("#cc391b","#e7823a","#969696","#026c9a")
        ) + NoAxes()

Differentiating neurons trajectory

Neurons.data <-  subset(Hem.data, idents = c("Cajal-Retzius_neurons", "Pallial_neurons"))

DimPlot(Neurons.data ,
        reduction = "spring",
        pt.size = 1,
        cols =  c("#cc391b","#026c9a")
        ) + NoAxes()

Fit principale curve on the two lineages

Cajal-Retzius cells

Trajectories.Hem <- Neurons.data@meta.data %>%
                    select("Barcodes", "nUMI", "Spring_1", "Spring_2", "AP_signature1","BP_signature1", "EN_signature1", "LN_signature1", "Lineage") %>%
                    filter(Lineage == "Cajal-Retzius_neurons")
fit <- principal_curve(as.matrix(Trajectories.Hem[,c("Spring_1", "Spring_2")]),
                       smoother='lowess',
                       trace=TRUE,
                       f = .7,
                       stretch=0)
## Starting curve---distance^2: 45804778678
## Iteration 1---distance^2: 27732113
## Iteration 2---distance^2: 27728318
#The principal curve smoothed
Hem.pc.line <- as.data.frame(fit$s[order(fit$lambda),]) 

#Pseudotime score
Trajectories.Hem$PseudotimeScore <- fit$lambda/max(fit$lambda)
if (cor(Trajectories.Hem$PseudotimeScore, Neurons.data@assays$SCT@data['Hmga2', Trajectories.Hem$Barcodes]) > 0) {
  Trajectories.Hem$PseudotimeScore <- -(Trajectories.Hem$PseudotimeScore - max(Trajectories.Hem$PseudotimeScore))
}

Pallial neurons

Trajectories.Pallial <- Neurons.data@meta.data %>%
                        select("Barcodes", "nUMI", "Spring_1", "Spring_2", "AP_signature1","BP_signature1", "EN_signature1", "LN_signature1", "Lineage") %>%
                        filter(Lineage == "Pallial_neurons")
fit <- principal_curve(as.matrix(Trajectories.Pallial[,c("Spring_1", "Spring_2")]),
                       smoother='lowess',
                       trace=TRUE,
                       f = .7,
                       stretch=0)
## Starting curve---distance^2: 26984853690
## Iteration 1---distance^2: 22153700
## Iteration 2---distance^2: 22179462
## Iteration 3---distance^2: 22180297
#The principal curve smoothed
Pallial.pc.line <- as.data.frame(fit$s[order(fit$lambda),])

#Pseudotime score
Trajectories.Pallial$PseudotimeScore <- fit$lambda/max(fit$lambda)
if (cor(Trajectories.Pallial$PseudotimeScore, Neurons.data@assays$SCT@data['Hmga2', Trajectories.Pallial$Barcodes]) > 0) {
  Trajectories.Pallial$PseudotimeScore <- -(Trajectories.Pallial$PseudotimeScore - max(Trajectories.Pallial$PseudotimeScore))
}

Combine the two trajectories’ data

Trajectories.neurons <- rbind(Trajectories.Pallial, Trajectories.Hem)
cols <- brewer.pal(n =11, name = "Spectral")

ggplot(Trajectories.neurons, aes(Spring_1, Spring_2)) +
  geom_point(aes(color=PseudotimeScore), size=2, shape=16) + 
  scale_color_gradientn(colours=rev(cols), name='Speudotime score') +
  geom_line(data=Pallial.pc.line, color="#026c9a", size=0.77) +
  geom_line(data=Hem.pc.line, color="#cc391b", size=0.77)

Plot pan-neuronal genes along this axis

Neurons.data <- NormalizeData(Neurons.data, normalization.method = "LogNormalize", scale.factor = 10000, assay = "RNA")
# Neurog2
p1 <- FeaturePlot(object = Neurons.data,
            features = c("Neurog2"),
            pt.size = 0.5,
            cols = c("grey90", brewer.pal(9,"YlGnBu")),
            reduction = "spring",
            order = T) & NoAxes()

Trajectories.neurons$Neurog2 <- Neurons.data@assays$RNA@data["Neurog2", Trajectories.neurons$Barcodes]

p2 <- ggplot(Trajectories.neurons, aes(x= PseudotimeScore, y= Neurog2)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

# Tbr1 
p3 <- FeaturePlot(object = Neurons.data ,
            features = c("Tbr1"),
            pt.size = 0.5,
            cols = c("grey90", brewer.pal(9,"YlGnBu")),
            reduction = "spring",
            order = T) & NoAxes()
Trajectories.neurons$Tbr1 <- Neurons.data@assays$RNA@data["Tbr1", Trajectories.neurons$Barcodes]

p4 <- ggplot(Trajectories.neurons, aes(x= PseudotimeScore, y= Tbr1)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

# Mapt 
p5 <- FeaturePlot(object = Neurons.data ,
            features = c("Mapt"),
            pt.size = 0.5,
            cols = c("grey90", brewer.pal(9,"YlGnBu")),
            reduction = "spring",
            order = T) & NoAxes()

Trajectories.neurons$Mapt <- Neurons.data@assays$RNA@data["Mapt", Trajectories.neurons$Barcodes]

p6 <- ggplot(Trajectories.neurons, aes(x= PseudotimeScore, y= Mapt)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

p1 + p2 + p3 + p4 + p5 + p6 + patchwork::plot_layout(ncol = 2)

Shift Pseudotime in both lineage

Since we observe the first 25% of both trajectories are occupied by few, likely progenitor cells, we shift this cell along the axis

Pseudotime.intervals <- Trajectories.neurons%>%
                          select(Lineage, PseudotimeScore) %>%
                          mutate(Pseudotime.bins = cut(Trajectories.neurons$PseudotimeScore, seq(0, max(Trajectories.neurons$PseudotimeScore) + 0.05, 0.05), dig.lab = 2, right = FALSE)) %>%
                          group_by(Lineage, Pseudotime.bins) %>%
                          summarise(n=n())

ggplot(Pseudotime.intervals, aes(x=Pseudotime.bins, y=n, fill=Lineage)) +
        geom_bar(stat = "identity", width = 0.90) +
        theme(axis.text.x = element_text(angle = 45, hjust=1))+
        scale_fill_manual(values= c("#cc391b", "#026c9a"))

score <- sapply(Trajectories.neurons$PseudotimeScore,
                FUN = function(x) if (x <= 0.2) {x= 0.2} else { x=x })

Trajectories.neurons$PseudotimeScore.shifted <- (score - min(score)) / (max(score) - min(score))
# Neurog2
p1 <- FeaturePlot(object = Neurons.data ,
            features = c("Neurog2"),
            pt.size = 0.5,
            cols = c("grey90", brewer.pal(9,"YlGnBu")),
            reduction = "spring",
            order = T) & NoAxes()

p2 <- ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= Neurog2)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

# Tbr1 
p3 <- FeaturePlot(object = Neurons.data ,
            features = c("Tbr1"),
            pt.size = 0.5,
            cols = c("grey90", brewer.pal(9,"YlGnBu")),
            reduction = "spring",
            order = T) & NoAxes()

p4 <- ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= Tbr1)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

# Mapt 
p5 <- FeaturePlot(object = Neurons.data ,
            features = c("Mapt"),
            pt.size = 0.5,
            cols = c("grey90", brewer.pal(9,"YlGnBu")),
            reduction = "spring",
            order = T) & NoAxes()

p6 <- ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= Mapt)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

p1 + p2 + p3 + p4 + p5 + p6 + patchwork::plot_layout(ncol = 2)

ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= nUMI/10000)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
        ylim(0,NA)

rm(list = ls()[!ls() %in% c("Trajectories.neurons")])

Load progenitors with cell cycle trajectory fitted

Progenitors.data <- readRDS("../ProgenitorsDiversity/Progenitors.RDS")
table(Progenitors.data$Cell_ident)
## 
## Dorso-Medial_pallium                  Hem       Medial_pallium 
##                 3451                 1954                 2719

To balance the number of progenitors in both domain we will only work with Hem and Medial_pallium annotated cells. Since we are using pallial cell to contrast CR specific trajectory we think this approximation will not significantly affect our analysis.

Progenitors.data <-  subset(Progenitors.data, idents = c("Hem", "Medial_pallium"))
p1 <- DimPlot(Progenitors.data,
        reduction = "spring",
        pt.size = 0.5,
        cols =  c("#e3c148", "#e46b6b")) + NoAxes()

p2 <- FeaturePlot(object = Progenitors.data,
            features = "Revelio.cc",
            pt.size = 0.5,
            cols = rev(brewer.pal(10,"Spectral")),
            reduction = "spring",
            order = T) & NoAxes()

p3 <- DimPlot(object = Progenitors.data,
        group.by = "Revelio.phase",
        pt.size = 0.5,
        reduction = "spring",
        cols =  c(wes_palette("FantasticFox1")[1:3],"grey40",wes_palette("FantasticFox1")[5])) & NoAxes()

p1 + p2 + p3  + patchwork::plot_layout(ncol = 2)

Combined progenitors and neurons along Pseudotime

# Start with neurons data
Trajectories.all <- Trajectories.neurons %>% select(Barcodes, nUMI, Spring_1, Spring_2, AP_signature1, BP_signature1, EN_signature1, LN_signature1, Lineage)

Trajectories.all$Pseudotime <- Trajectories.neurons$PseudotimeScore.shifted + 0.5
Trajectories.all$Phase <- NA
# Add progenitors data
Trajectories.progenitors <- Progenitors.data@meta.data %>%
                              select(Barcodes, nUMI, Spring_1, Spring_2, AP_signature1, BP_signature1, EN_signature1, LN_signature1) %>% 
                              mutate(Lineage= ifelse(Progenitors.data$Cell_ident == "Medial_pallium", "Pallial_neurons", "Cajal-Retzius_neurons") ,
                                     Pseudotime= Progenitors.data$Revelio.cc/2,
                                     Phase = Progenitors.data$Revelio.phase)
Trajectories.all <- rbind(Trajectories.all, Trajectories.progenitors)

Trajectories.all$Phase <- factor(Trajectories.all$Phase, levels = c("G1.S", "S", "G2", "G2.M", "M.G1"))
p1 <- ggplot(Trajectories.all, aes(Spring_1, Spring_2)) +
        geom_point(aes(color=Pseudotime), size=0.5) + 
        scale_color_gradientn(colours=rev(brewer.pal(n =11, name = "Spectral")), name='Pseudotime score')

p2 <- ggplot(Trajectories.all, aes(Spring_1, Spring_2)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a"))

p1 + p2

p1 <- ggplot(Trajectories.all, aes(x= Pseudotime, y= nUMI/10000)) +
        geom_point(aes(color= Phase), size=0.5) +
        scale_color_manual(values= c(wes_palette("FantasticFox1")[1:3],"grey40",wes_palette("FantasticFox1")[5])) +
        geom_smooth(method="loess", n= 50, fill="grey") +
        ylim(0,NA)

p2 <- ggplot(Trajectories.all, aes(x= Pseudotime, y= nUMI/10000)) +
        geom_point(aes(color= Lineage), size=0.5) +
        scale_color_manual(values= c("#cc391b", "#026c9a")) +
        geom_smooth(method="loess", n= 50, fill="grey") +
        ylim(0,NA)

p1 / p2

p1 <- ggplot(Trajectories.all, aes(x= Pseudotime, y= AP_signature1)) +
  geom_point(aes(color= Lineage), size=0.5) +
  scale_color_manual(values= c("#cc391b", "#026c9a")) +
  geom_smooth(method="loess", n= 50, fill="grey")


p2 <- ggplot(Trajectories.all, aes(x= Pseudotime, y= BP_signature1)) +
  geom_point(aes(color= Lineage), size=0.5) +
  scale_color_manual(values= c("#cc391b", "#026c9a")) +
  geom_smooth(method="loess", n= 50, fill="grey")

p3 <- ggplot(Trajectories.all, aes(x= Pseudotime, y= EN_signature1)) +
  geom_point(aes(color= Lineage), size=0.5) +
  scale_color_manual(values= c("#cc391b", "#026c9a")) +
  geom_smooth(method="loess", n= 50, fill="grey")

p4 <- ggplot(Trajectories.all, aes(x= Pseudotime, y= LN_signature1)) +
  geom_point(aes(color= Lineage), size=0.5) +
  scale_color_manual(values= c("#cc391b", "#026c9a")) +
  geom_smooth(method="loess", n= 50, fill="grey")


p1 / p2 / p3 / p4

rm(list = ls()[!ls() %in% c("Trajectories.all")])

Subset the full dataset Seurat object

Hem.data <- readRDS("../QC.filtered.clustered.cells.RDS")
Neuro.trajectories <- CreateSeuratObject(counts = Hem.data@assays$RNA@data[, Trajectories.all$Barcodes],
                                         meta.data = Trajectories.all)

spring <- as.matrix(Neuro.trajectories@meta.data %>% select("Spring_1", "Spring_2"))
  
Neuro.trajectories[["spring"]] <- CreateDimReducObject(embeddings = spring, key = "Spring_", assay = DefaultAssay(Neuro.trajectories))
p1 <- FeaturePlot(object = Neuro.trajectories,
            features = "Pseudotime",
            pt.size = 0.5,
            cols = rev(colorRampPalette(brewer.pal(n =11, name = "Spectral"))(100)),
            reduction = "spring",
            order = T) & NoAxes()

p2 <- DimPlot(object = Neuro.trajectories,
        group.by = "Lineage",
        pt.size = 0.5,
        reduction = "spring",
        cols =  c("#cc391b", "#026c9a")) & NoAxes()


p3 <- DimPlot(object = Neuro.trajectories,
        group.by = "Phase",
        pt.size = 0.5,
        reduction = "spring",
        cols =  c(wes_palette("FantasticFox1")[1:3],"grey40",wes_palette("FantasticFox1")[5])) & NoAxes()

p1 + p2 + p3

rm(list = ls()[!ls() %in% c("Neuro.trajectories")])

Normalization

Neuro.trajectories<- NormalizeData(Neuro.trajectories, normalization.method = "LogNormalize", scale.factor = 10000, assay = "RNA")
Neuro.trajectories <- FindVariableFeatures(Neuro.trajectories, selection.method = "disp", nfeatures = 3000, assay = "RNA")

Plot some genes along pseudotime

source("../Functions/functions_GeneTrends.R")

Plot.Genes.trend(Seurat.data= Neuro.trajectories,
                 group.by = "Lineage",
                 genes= c("Gas1","Sox2",
                          "Neurog2", "Btg2",
                          "Tbr1", "Mapt",
                          "Trp73", "Foxg1"))

Plot.Genes.trend(Seurat.data= Neuro.trajectories,
                 group.by = "Lineage",
                 genes= c("Gmnc", "Mcidas",
                          "Foxj1", "Trp73",
                          "Lhx1", "Cdkn1a"))

Plot.Genes.trend(Seurat.data= Neuro.trajectories,
                 group.by = "Lineage",
                 genes= c("Mki67", "Top2a",
                          "H2afx", "Cdkn1c"))

Use monocle2 to model gene expression along cycling axis

Initialize a monocle object

# Transfer metadata
meta.data <- data.frame(Barcode= Neuro.trajectories$Barcodes,
                        Lineage= Neuro.trajectories$Lineage,
                        Pseudotime= Neuro.trajectories$Pseudotime,
                        Phase= Neuro.trajectories$Phase)

Annot.data  <- new('AnnotatedDataFrame', data = meta.data)

# Transfer counts data
var.genes <- Neuro.trajectories[["RNA"]]@var.features
count.data = data.frame(gene_short_name = rownames(Neuro.trajectories[["RNA"]]@data[var.genes,]),
                        row.names = rownames(Neuro.trajectories[["RNA"]]@data[var.genes,]))

feature.data <- new('AnnotatedDataFrame', data = count.data)

# Create the CellDataSet object including variable genes only
gbm_cds <- newCellDataSet(Neuro.trajectories[["RNA"]]@counts[var.genes,],
                          phenoData = Annot.data,
                          featureData = feature.data,
                          lowerDetectionLimit = 0,
                          expressionFamily = negbinomial())
gbm_cds <- estimateSizeFactors(gbm_cds)
gbm_cds <- estimateDispersions(gbm_cds)
gbm_cds <- detectGenes(gbm_cds, min_expr = 0.1)
rm(list = ls()[!ls() %in% c("Neuro.trajectories", "gbm_cds", "Gene.Trend", "Plot.Genes.trend")])
gc()
##             used  (Mb) gc trigger   (Mb)  max used   (Mb)
## Ncells   3562116 190.3    6272701  335.0   6272701  335.0
## Vcells 102185856 779.7  377971751 2883.7 618468591 4718.6

Find Pan-neuronal genes

# Split pallial and subpallial cells for gene expression fitting
#Pallial cells
Pallialcells <- Neuro.trajectories@meta.data %>%
                filter(Lineage == "Pallial_neurons") %>%
                pull(Barcodes)

# Cajal-Retzius cells
CRcells <- Neuro.trajectories@meta.data %>%
                   filter(Lineage == "Cajal-Retzius_neurons") %>%
                   pull(Barcodes)
# We filter-out genes detected in less than 200 or 200 cells along Pallial or CR lineages
num.cells <- Matrix::rowSums(Neuro.trajectories@assays$RNA@counts[,Pallialcells] > 0)
Pallial.expressed <- names(x = num.cells[which(x = num.cells >= 200)])

num.cells <- Matrix::rowSums(Neuro.trajectories@assays$RNA@counts[,CRcells] > 0)
CR.expressed <- names(x = num.cells[which(x = num.cells >= 200)])

Input.genes <- rownames(gbm_cds)[rownames(gbm_cds) %in% intersect(Pallial.expressed, CR.expressed)]
Pallial.genes <- differentialGeneTest(gbm_cds[Input.genes, Pallialcells], 
                                                 fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)", 
                                                 reducedModelFormulaStr = "~1", 
                                                 cores = parallel::detectCores() - 2)

#Filter based on FDR
Pallial.genes.filtered <- Pallial.genes  %>% filter(qval < 1e-3)
CRcells.genes <- differentialGeneTest(gbm_cds[Input.genes, CRcells], 
                                                 fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)", 
                                                 reducedModelFormulaStr = "~1", 
                                                 cores = parallel::detectCores() - 2)

#Filter based on FDR
CRcells.genes.filtered <- CRcells.genes  %>% filter(qval < 1e-3)
Common.genes <- intersect(Pallial.genes.filtered$gene_short_name, CRcells.genes.filtered$gene_short_name)
# Smooth genes expression along the two trajectories
nPoints <- 300

new_data = list()
for (Lineage in unique(pData(gbm_cds)$Lineage)){
  new_data[[length(new_data) + 1]] = data.frame(Pseudotime = seq(min(pData(gbm_cds)$Pseudotime), max(pData(gbm_cds)$Pseudotime), length.out = nPoints), Lineage=Lineage)
}

new_data = do.call(rbind, new_data)

# Smooth gene expression
curve_matrix <- genSmoothCurves(gbm_cds[as.character(Common.genes),],
                                trend_formula = "~sm.ns(Pseudotime, df = 3)*Lineage",
                                relative_expr = TRUE,
                                new_data = new_data,
                                cores= parallel::detectCores() - 2)
# Extract genes with person's cor > 0.6 between the 2 trajectories

Pallial.smoothed <- scale(t(curve_matrix[,c(1:300)]))  #Pallial points
CR.smoothed <- scale(t(curve_matrix[,c(301:600)])) #CR points

mat <- cor(Pallial.smoothed, CR.smoothed, method = "pearson")

Gene.Cor <- diag(mat)
hist(Gene.Cor, breaks = 100)
abline(v=0.8,col=c("blue"))

PanNeuro.genes <- names(Gene.Cor[Gene.Cor > 0.8])
# Order rows using seriation
dst <- as.dist((1-cor(scale(t(curve_matrix[PanNeuro.genes,c(600:301)])), method = "pearson")))
row.ser <- seriate(dst, method ="MDS_angle") #MDS_angle
gene.order <- PanNeuro.genes[get_order(row.ser)]

anno.colors <- list(lineage = c(Pallial="#026c9a",CR="#cc391b"))


pheatmap::pheatmap(curve_matrix[rev(gene.order),
                                c(1:300, 301:600)], #CR
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_col = data.frame(lineage = rep(c("Pallial","CR"), each=300)),
                   annotation_colors = anno.colors,
                   show_colnames = F,
                   show_rownames = T,
                   fontsize_row = 2,
                   color =  viridis::viridis(10),
                   breaks = seq(-2.5,2.5, length.out = 10),
                   main = "")

rm(list = ls()[!ls() %in% c("Neuro.trajectories", "gbm_cds", "Gene.Trend", "Plot.Genes.trend")])
gc()
##             used  (Mb) gc trigger (Mb)  max used   (Mb)
## Ncells   3599594 192.3    6272701  335   6272701  335.0
## Vcells 102281635 780.4  302377401 2307 618468591 4718.6

Test each gene trend over pseudotime score

Find genes DE along pseudomaturation axis

pseudo.maturation.diff <- differentialGeneTest(gbm_cds[fData(gbm_cds)$num_cells_expressed > 80,], 
                                                 fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)*Lineage", 
                                                 reducedModelFormulaStr = "~sm.ns(Pseudotime, df = 3)", 
                                                 cores = parallel::detectCores() - 2)
# Filter genes based on FDR
pseudo.maturation.diff.filtered <- pseudo.maturation.diff %>% filter(qval < 1e-40)

Direction of the DEG by calculating the area between curves (ABC)

Smooth commun genes along the two trajectories

# Create a new pseudo-DV vector of 200 points
nPoints <- 300

new_data = list()
for (Lineage in unique(pData(gbm_cds)$Lineage)){
  new_data[[length(new_data) + 1]] = data.frame(Pseudotime = seq(min(pData(gbm_cds)$Pseudotime), max(pData(gbm_cds)$Pseudotime), length.out = nPoints), Lineage=Lineage)
}

new_data = do.call(rbind, new_data)

# Smooth gene expression
Diff.curve_matrix <- genSmoothCurves(gbm_cds[as.character(pseudo.maturation.diff.filtered$gene_short_name),],
                                      trend_formula = "~sm.ns(Pseudotime, df = 3)*Lineage",
                                      relative_expr = TRUE,
                                      new_data = new_data,
                                      cores= parallel::detectCores() - 2)

Compute the ABC for each gene

# Extract matrix containing smoothed curves for each lineages
Pal_curve_matrix <- Diff.curve_matrix[, 1:nPoints] #Pallial points
CR_curve_matrix <- Diff.curve_matrix[, (nPoints + 1):(2 * nPoints)] #CR points

# Direction of the comparison : postive ABCs <=> Upregulated in CR lineage
ABCs_res <- CR_curve_matrix - Pal_curve_matrix

# Average logFC between the 2 curves
ILR_res <- log2(CR_curve_matrix/ (Pal_curve_matrix + 0.1)) 
  
ABCs_res <- apply(ABCs_res, 1, function(x, nPoints) {
                  avg_delta_x <- (x[1:(nPoints - 1)] + x[2:(nPoints)])/2
                  step <- (100/(nPoints - 1))
                  res <- round(sum(avg_delta_x * step), 3)
                  return(res)},
                  nPoints = nPoints) # Compute the area below the curve
  
ABCs_res <- cbind(ABCs_res, ILR_res[,ncol(ILR_res)])
colnames(ABCs_res)<- c("ABCs", "Endpoint_ILR")

# Import ABC values into the DE test results table
pseudo.maturation.diff.filtered <- cbind(pseudo.maturation.diff.filtered[,1:4],
                                         ABCs_res,
                                         pseudo.maturation.diff.filtered[,5:6])

Cajal-Retzius cells specific trajectory analysis

# Extract Cajal-Retzius expressed genes
CR.res <- as.data.frame(pseudo.maturation.diff.filtered[pseudo.maturation.diff.filtered$ABCs > 0,])
CR.genes <- row.names(CR.res)

CR_curve_matrix <- CR_curve_matrix[CR.genes, ]

Gene expression profiles along the trajectory

Pseudotime.genes.clusters <- cluster::pam(as.dist((1 - cor(Matrix::t(CR_curve_matrix),method = "pearson"))), k= 5)

CR.Gene.dynamique <- data.frame(Gene= names(Pseudotime.genes.clusters$clustering),
                                 Waves= Pseudotime.genes.clusters$clustering,
                                 Gene.Clusters = Pseudotime.genes.clusters$clustering,
                                 q.val = CR.res$qval,
                                 ABCs= CR.res$ABCs
                                 ) %>% arrange(Gene.Clusters)

row.names(CR.Gene.dynamique) <- CR.Gene.dynamique$Gene
CR.Gene.dynamique$Gene.Clusters <- paste0("Clust.", CR.Gene.dynamique$Gene.Clusters)

write.table(CR.Gene.dynamique, "CR_dynamic_genes.csv", sep = ";", quote = F, row.names = F)
# Order the rows using seriation
dst <- as.dist((1-cor(scale(t(CR_curve_matrix)), method = "pearson")))
row.ser <- seriation::seriate(dst, method ="R2E") #"R2E" #TSP #"GW" "GW_ward"
gene.order <- rownames(CR_curve_matrix[get_order(row.ser),])

# Set annotation colors
pal <- wes_palette("Darjeeling1")
anno.colors <- list(lineage = c(Pallial_neurons="#026c9a", Cajal_Retzius="#cc391b"),
                    Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))


pheatmap::pheatmap(Diff.curve_matrix[gene.order,
                                c(300:1,#Pal 
                                  301:600)], #CR
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
                   annotation_colors = anno.colors,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

We manually correct the reordering so genes are aligned from top left to bottom rigth

gene.order <- gene.order[c(243:1,622:244)]

pheatmap::pheatmap(Diff.curve_matrix[gene.order,
                                c(300:1,#Pal 
                                  301:600)], #CR
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
                   annotation_colors = anno.colors,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

anno.colors <- list(Cell.state = c(Cycling_RG="#046c9a", Differentiating_cells="#ebcb2e"),
                    Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))

col.anno <- data.frame(Cell.state = rep(c("Cycling_RG","Differentiating_cells"), c(100,200)))
rownames(col.anno) <- 301:600

pheatmap::pheatmap(CR_curve_matrix[gene.order,],
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   annotation_col = col.anno,
                   annotation_colors = anno.colors,
                   gaps_col = 100,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

diff.state <- Neuro.trajectories@meta.data %>%
              filter(Lineage ==  "Cajal-Retzius_neurons") %>%
              select("AP_signature1", "BP_signature1", "EN_signature1", "LN_signature1", "Pseudotime")

AP.loess <- loess(AP_signature1 ~ Pseudotime, diff.state)
AP.smooth <- predict(AP.loess,
                     seq(0.01,1.5, length.out= 300))

BP.loess <- loess(BP_signature1 ~ Pseudotime, diff.state)
BP.smooth <- predict(BP.loess,
                     seq(0.01,1.5, length.out= 300))

EN.loess <- loess(EN_signature1 ~ Pseudotime, diff.state)
EN.smooth <- predict(EN.loess,
                     seq(0.01,1.5, length.out= 300))

LN.loess <- loess(LN_signature1 ~ Pseudotime, diff.state)
LN.smooth <- predict(LN.loess,
                     seq(0.01,1.5, length.out= 300))

Smoothed.states <- cbind(AP.smooth, BP.smooth, EN.smooth, LN.smooth)
heatmap.states <- pheatmap::pheatmap(as.data.frame(t(Smoothed.states)),
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   gaps_col = 100,
                   gaps_row = c(1,2,3),
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  rev(colorRampPalette(brewer.pal(n= 8, name = "RdBu"))(100)),
                   breaks = seq(-1,1, length.out = 100),
                   main = "")
heatmap.gene <- pheatmap::pheatmap(CR_curve_matrix[gene.order,],
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   gaps_col = 100,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")
cowplot::plot_grid(heatmap.states$gtable, heatmap.gene$gtable,
                   ncol = 1,
                   align = "v",
                   rel_heights = c(1,3),
                   greedy = T)

Gene cluster trend

source("../Functions/functions_GeneClusterTrend.R")

Plot.clust.trends(Neuro.trajectories,
                   Lineage = "Cajal-Retzius_neurons",
                   Which.cluster = 1:5,
                   clust.list = Pseudotime.genes.clusters$clustering,
                   Smooth.method = "gam")

GO term enrichment in gene clusters using gprofiler2

CR.gostres <- gost(query = list("Clust.1" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.1") %>% pull(Gene) %>% as.character(),
                             "Clust.2" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.2") %>% pull(Gene) %>% as.character(),
                             "Clust.3" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.3") %>% pull(Gene) %>% as.character(),
                             "Clust.4" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.4") %>% pull(Gene) %>% as.character(),
                             "Clust.5" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.5") %>% pull(Gene) %>% as.character()),
                organism = "mmusculus", ordered_query = F, 
                multi_query = F, significant = T, exclude_iea = T, 
                measure_underrepresentation = F, evcodes = T, 
                user_threshold = 0.05, correction_method = "fdr", 
                domain_scope = "annotated", custom_bg = NULL, 
                numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)

write.table(apply(CR.gostres$result,2,as.character),
            "CR_GO_res-by-waves.csv", sep = ";", quote = F, row.names = F)
DNA_damage_GOterm <- CR.gostres$result[CR.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977","GO:0033554",
                                                                                 "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]

DNA_damage_GOterm[,c(9,1,2,3,5,6,7,11)]

Multiciliation and DNA damage score

Hem.data <- readRDS("../QC.filtered.clustered.cells.RDS")

We took the 28 genes from (Lewis & Stracker 2021)[https://doi.org/10.1016/j.semcdb.2020.04.007]

MCC.genes <- list(c("Trp73", "Gmnc", "Foxj1", "Myb", "Ccno", "Ccdc67", "Mcidas", "E2f4", "E2f5", "Ahr", "Trrap", "Cdc20b", "Ccdc78", "Rfx2", "Rfx3", "Foxn4", "Fank1", "Jazf1", "Ccna1", "Nek10", "Plk4", "Cep63", "Cep152", "Sass6", "Pcnt", "Pcm1", "Cetn2", "Tfdp1"))

Hem.data <- AddModuleScore(Hem.data,
                           features = MCC.genes,
                           name = "MCC_score")

p1 <- FeaturePlot(object = Hem.data,
            features = c("MCC_score1"),
            pt.size = 0.5,
            cols = rev(brewer.pal(10,"Spectral")),
            reduction = "spring",
            order = T) & NoAxes()
DNA_damage_genes <- DNA_damage_GOterm %>%
                    filter(query %in% c("Clust.2", "Clust.3", "Clust.4")) %>%
                    filter(term_id == "GO:0033554") %>%
                    pull(intersection) %>% strsplit("\\,") %>% unlist() %>% unique()
Hem.data <- AddModuleScore(Hem.data,
                           features = DNA_damage_genes,
                           name = "cellular_response_to_stress_score")

p2 <- FeaturePlot(object = Hem.data,
            features = c("cellular_response_to_stress_score1"),
            pt.size = 0.5,
            cols = rev(brewer.pal(10,"Spectral")),
            reduction = "spring",
            order = T) & NoAxes()
p1 + p2 + patchwork::plot_layout(ncol = 2)

Go term on all CR genes

CR.gostres <- gost(query = as.character(CR.Gene.dynamique$Gene),
                organism = "mmusculus", ordered_query = F, 
                multi_query = F, significant = T, exclude_iea = T, 
                measure_underrepresentation = F, evcodes = T, 
                user_threshold = 0.05, correction_method = "fdr", 
                domain_scope = "annotated", custom_bg = NULL, 
                numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)

write.table(apply(CR.gostres$result,2,as.character),
            "CR_GO_res.csv", sep = ";", quote = F, row.names = F)
DNA_damage_GOterm <- CR.gostres$result[CR.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977",
                                                                                 "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]

DNA_damage_GOterm[,c(1,2,3,5,6,7,11)]

Intersection with ChP dynamicaly expressed genes

ChP_dynamic_genes <- read.table("../ChoroidPlexus_trajectory/ChP.Gene.dynamique.csv", sep = ";", header = T, row.names = 1)
CR_ChP_common_genes <- CR.Gene.dynamique %>% filter(Gene %in% ChP_dynamic_genes$Gene)
write.table(CR_ChP_common_genes, "CR-ChP_common_dynamic.csv", sep = ";", quote = F, row.names = F)
gene.order2 <- gene.order[gene.order %in% CR_ChP_common_genes$Gene]

pheatmap::pheatmap(CR_curve_matrix[gene.order2,],
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   #annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   #annotation_col = col.anno,
                   #annotation_colors = anno.colors,
                   gaps_col = 100,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

CR_ChP_common.gostres <- gost(query = list("Clust.1" = CR_ChP_common_genes %>% filter(Gene.Clusters == "Clust.1") %>% pull(Gene) %>% as.character(),
                             "Clust.2" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.2") %>% pull(Gene) %>% as.character(),
                             "Clust.3" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.3") %>% pull(Gene) %>% as.character(),
                             "Clust.4" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.4") %>% pull(Gene) %>% as.character(),
                             "Clust.5" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.5") %>% pull(Gene) %>% as.character()),
                organism = "mmusculus", ordered_query = F, 
                multi_query = F, significant = T, exclude_iea = T, 
                measure_underrepresentation = F, evcodes = T, 
                user_threshold = 0.05, correction_method = "fdr", 
                domain_scope = "annotated", custom_bg = NULL, 
                numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)

write.table(apply(CR_ChP_common.gostres$result,2,as.character),
            "CR_ChP_common_GO_res-by-waves.csv", sep = ";", quote = F, row.names = F)
DNA_damage_GOterm <- CR_ChP_common.gostres$result[CR_ChP_common.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977",
                                                                                       "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]

DNA_damage_GOterm[,c(1,2,3,5,6,7,11)]
CR_ChP_common.gostres <- gost(query = as.character(CR_ChP_common_genes$Gene),
                organism = "mmusculus", ordered_query = F, 
                multi_query = F, significant = T, exclude_iea = T, 
                measure_underrepresentation = F, evcodes = T, 
                user_threshold = 0.05, correction_method = "fdr", 
                domain_scope = "annotated", custom_bg = NULL, 
                numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)

write.table(apply(CR_ChP_common.gostres$result,2,as.character),
            "CR_ChP_common_GO_res_all.csv", sep = ";", quote = F, row.names = F)

Medial CR transcription factor dynamic

CR <- Neuro.trajectories@meta.data %>% filter(Lineage == "Cajal-Retzius_neurons") %>% select(Barcodes,Pseudotime)

CR.genes <- cbind(t(Neuro.trajectories@assays$RNA@data[c("Gmnc","Trp73", "Lhx1", "Barhl2"),CR$Barcodes]), CR %>% select(Pseudotime))

CR.genes  <- reshape2::melt(CR.genes, id = c("Pseudotime"))


ggplot(CR.genes, aes(x= Pseudotime, y= value)) +
#  geom_point(aes(color= variable), size=0.5) +
  geom_smooth(method="loess", n= 50, aes(color= variable)) +
  scale_color_manual(values= c(wes_palette("FantasticFox1")[1:3],wes_palette("FantasticFox1")[5])) +
  ylim(0,NA)

Pallial neurons trajectory analysis

# Extract Pallial neurons trajectory genes
Pal.res <- as.data.frame(pseudo.maturation.diff.filtered[pseudo.maturation.diff.filtered$ABCs < 0,])
Pal.genes <- row.names(Pal.res)

Pal_curve_matrix <- Pal_curve_matrix[Pal.genes, ]

Gene expression profiles along the trajectory

## Cluster gene by expression profiles
Pseudotime.genes.clusters <- cluster::pam(as.dist((1 - cor(Matrix::t(Pal_curve_matrix),method = "pearson"))), k= 5)

Pal.Gene.dynamique <- data.frame(Gene= names(Pseudotime.genes.clusters$clustering),
                             Waves= Pseudotime.genes.clusters$clustering,
                             Gene.Clusters = Pseudotime.genes.clusters$clustering,
                             q.val = Pal.res$pval,
                             ABCs= Pal.res$ABCs
                             ) %>% arrange(Gene.Clusters)

row.names(Pal.Gene.dynamique) <- Pal.Gene.dynamique$Gene
Pal.Gene.dynamique$Gene.Clusters <- paste0("Clust.", Pal.Gene.dynamique$Gene.Clusters)
# Order the rows using seriation
dst <- as.dist((1-cor(scale(t(Pal_curve_matrix)), method = "pearson")))
row.ser <- seriation::seriate(dst, method ="R2E") #"R2E" #TSP #"GW" "GW_ward"
gene.order <- rownames(Pal_curve_matrix[get_order(row.ser),])

# Set annotation colors
pal <- wes_palette("Darjeeling1")
anno.colors <- list(lineage = c(Pallial_neurons="#026c9a", Cajal_Retzius="#cc391b"),
                    Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))


pheatmap::pheatmap(Diff.curve_matrix[gene.order,
                                c(300:1,#Pal
                                  301:600)], #CR
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_row = Pal.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
                   annotation_colors = anno.colors,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

We manually correct the reordering so genes are aligned from top right to bottom left

gene.order <- gene.order[c(199:1,352:200)]

pheatmap::pheatmap(Diff.curve_matrix[gene.order,
                                c(300:1,#Pal
                                  301:600)], #CR
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_row = Pal.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
                   annotation_colors = anno.colors,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

anno.colors <- list(Cell.state = c(Cycling_RG="#046c9a", Differentiating_cells="#ebcb2e"),
                    Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))

col.anno <- data.frame(Cell.state = rep(c("Differentiating_cells","Cycling_RG"), c(200,100)))
rownames(col.anno) <- 300:1

pheatmap::pheatmap(Pal_curve_matrix[gene.order,300:1],
                   scale = "row",
                   cluster_rows = F,
                   cluster_cols = F,
                   annotation_row = Pal.Gene.dynamique %>% dplyr::select(Gene.Clusters),
                   annotation_col = col.anno,
                   annotation_colors = anno.colors,
                   gaps_col = 200,
                   show_colnames = F,
                   show_rownames = F,
                   fontsize_row = 8,
                   color =  viridis::viridis(9),
                   breaks = seq(-2.5,2.5, length.out = 9),
                   main = "")

Gene cluster trend

Plot.clust.trends(Neuro.trajectories,
                   Lineage = "Pallial_neurons",
                   Which.cluster = 1:5,
                   clust.list = Pseudotime.genes.clusters$clustering,
                   Smooth.method = "gam")

Pal.gostres <- gost(query = as.character(Pal.Gene.dynamique$Gene),
                organism = "mmusculus", ordered_query = F, 
                multi_query = F, significant = T, exclude_iea = T, 
                measure_underrepresentation = F, evcodes = T, 
                user_threshold = 0.05, correction_method = "fdr", 
                domain_scope = "annotated", custom_bg = NULL, 
                numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)

write.table(apply(Pal.gostres$result, 2, as.character),
            "Pal.gostres.csv", sep = ";", quote = F, row.names = F)
DNA_damage_GOterm <- Pal.gostres$result[Pal.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977",
                                                                                 "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]

DNA_damage_GOterm[,c(1,2,3,5,6,7,11)]

Session Info

#date
format(Sys.time(), "%d %B, %Y, %H,%M")
## [1] "13 mai, 2022, 16,48"
#Packages used
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
## 
## locale:
##  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=fr_FR.UTF-8    
##  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
##  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] splines   stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] wesanderson_0.3.6   cowplot_1.1.1       ggExtra_0.9        
##  [4] RColorBrewer_1.1-2  dplyr_1.0.7         seriation_1.3.1    
##  [7] gprofiler2_0.2.1    monocle_2.22.0      DDRTree_0.1.5      
## [10] irlba_2.3.3         VGAM_1.1-5          ggplot2_3.3.5      
## [13] Biobase_2.54.0      BiocGenerics_0.40.0 Matrix_1.4-1       
## [16] princurve_2.1.6     SeuratObject_4.0.4  Seurat_4.0.5       
## 
## loaded via a namespace (and not attached):
##   [1] plyr_1.8.6            igraph_1.2.11         lazyeval_0.2.2       
##   [4] densityClust_0.3      listenv_0.8.0         scattermore_0.7      
##   [7] fastICA_1.2-3         digest_0.6.29         foreach_1.5.1        
##  [10] htmltools_0.5.2       viridis_0.6.2         fansi_0.5.0          
##  [13] magrittr_2.0.2        tensor_1.5            cluster_2.1.3        
##  [16] ROCR_1.0-11           limma_3.50.0          globals_0.14.0       
##  [19] matrixStats_0.61.0    docopt_0.7.1          spatstat.sparse_2.0-0
##  [22] colorspace_2.0-2      ggrepel_0.9.1         xfun_0.28            
##  [25] RCurl_1.98-1.5        sparsesvd_0.2         crayon_1.4.2         
##  [28] jsonlite_1.7.2        spatstat.data_2.1-0   survival_3.2-13      
##  [31] zoo_1.8-9             iterators_1.0.13      glue_1.5.1           
##  [34] polyclip_1.10-0       registry_0.5-1        gtable_0.3.0         
##  [37] leiden_0.3.9          future.apply_1.8.1    abind_1.4-5          
##  [40] scales_1.1.1          pheatmap_1.0.12       DBI_1.1.1            
##  [43] miniUI_0.1.1.1        Rcpp_1.0.8            viridisLite_0.4.0    
##  [46] xtable_1.8-4          reticulate_1.22       spatstat.core_2.3-1  
##  [49] htmlwidgets_1.5.4     httr_1.4.2            FNN_1.1.3            
##  [52] ellipsis_0.3.2        ica_1.0-2             farver_2.1.0         
##  [55] pkgconfig_2.0.3       sass_0.4.0            uwot_0.1.10          
##  [58] deldir_1.0-6          utf8_1.2.2            labeling_0.4.2       
##  [61] tidyselect_1.1.1      rlang_0.4.12          reshape2_1.4.4       
##  [64] later_1.3.0           munsell_0.5.0         tools_4.2.0          
##  [67] generics_0.1.1        ggridges_0.5.3        evaluate_0.14        
##  [70] stringr_1.4.0         fastmap_1.1.0         yaml_2.2.1           
##  [73] goftest_1.2-3         knitr_1.36            fitdistrplus_1.1-6   
##  [76] purrr_0.3.4           RANN_2.6.1            pbapply_1.5-0        
##  [79] future_1.23.0         nlme_3.1-153          mime_0.12            
##  [82] slam_0.1-49           compiler_4.2.0        plotly_4.10.0        
##  [85] png_0.1-7             spatstat.utils_2.2-0  tibble_3.1.6         
##  [88] bslib_0.3.1           stringi_1.7.6         highr_0.9            
##  [91] lattice_0.20-45       HSMMSingleCell_1.14.0 vctrs_0.3.8          
##  [94] pillar_1.6.4          lifecycle_1.0.1       spatstat.geom_2.3-0  
##  [97] combinat_0.0-8        lmtest_0.9-39         jquerylib_0.1.4      
## [100] RcppAnnoy_0.0.19      bitops_1.0-7          data.table_1.14.2    
## [103] httpuv_1.6.3          patchwork_1.1.1       R6_2.5.1             
## [106] promises_1.2.0.1      TSP_1.1-11            KernSmooth_2.23-20   
## [109] gridExtra_2.3         parallelly_1.29.0     codetools_0.2-18     
## [112] MASS_7.3-56           assertthat_0.2.1      withr_2.4.3          
## [115] qlcMatrix_0.9.7       sctransform_0.3.2     mgcv_1.8-40          
## [118] parallel_4.2.0        grid_4.2.0            rpart_4.1.16         
## [121] tidyr_1.1.4           rmarkdown_2.11        Rtsne_0.15           
## [124] shiny_1.7.1

  1. Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France, ↩︎

LS0tCnRpdGxlOiAiQ2FqYWwtUmV0eml1cyBjZWxscyBUcmFqZWN0b3J5IgphdXRob3I6CiAgIC0gTWF0dGhpZXUgTW9yZWF1XltJbnN0aXR1dGUgb2YgUHN5Y2hpYXRyeSBhbmQgTmV1cm9zY2llbmNlIG9mIFBhcmlzLCBJTlNFUk0gVTEyNjYsIDc1MDE0LCBQYXJpcywgRnJhbmNlLCBtYXR0aGlldS5tb3JlYXVAaW5zZXJtLmZyXSBbIVtdKGh0dHBzOi8vb3JjaWQub3JnL3NpdGVzL2RlZmF1bHQvZmlsZXMvaW1hZ2VzL29yY2lkXzE2eDE2LnBuZyldKGh0dHBzOi8vb3JjaWQub3JnLzAwMDAtMDAwMi0yNTkyLTIzNzMpCmRhdGU6ICJgciBmb3JtYXQoU3lzLnRpbWUoKSwgJyVkICVCLCAlWScpYCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OiAKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgICBoaWdobGlnaHQ6IGhhZGRvY2sKICAgIHRoZW1lOiBjb3NtbwogICAgY3NzOiAiLi4vc3R5bGUuY3NzIgogICAgdG9jOiB5ZXMKICAgIHRvY19kZXB0aDogNQogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IHllcwotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUsIGZpZy5hbGlnbiA9ICdjZW50ZXInLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBjYWNoZS5sYXp5ID0gRkFMU0UpCgojIFRvIHVzZSBiaW9tYXJ0IApuZXdfY29uZmlnIDwtIGh0dHI6OmNvbmZpZyhzc2xfdmVyaWZ5cGVlciA9IEZBTFNFKQpodHRyOjpzZXRfY29uZmlnKG5ld19jb25maWcsIG92ZXJyaWRlID0gRkFMU0UpCmBgYAoKIyBMb2FkIGxpYnJhcmllcwoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeShTZXVyYXQpCmxpYnJhcnkocHJpbmN1cnZlKQpsaWJyYXJ5KG1vbm9jbGUpCmxpYnJhcnkoZ3Byb2ZpbGVyMikKbGlicmFyeShzZXJpYXRpb24pCmxpYnJhcnkoTWF0cml4KQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KFJDb2xvckJyZXdlcikKbGlicmFyeShnZ3Bsb3QyKQpsaWJyYXJ5KGdnRXh0cmEpCmxpYnJhcnkoY293cGxvdCkKbGlicmFyeSh3ZXNhbmRlcnNvbikKCiNTZXQgZ2dwbG90IHRoZW1lIGFzIGNsYXNzaWMKdGhlbWVfc2V0KHRoZW1lX2NsYXNzaWMoKSkKYGBgCgojIExvYWQgdGhlIGZ1bGwgZGF0YXNldAoKYGBge3J9CkhlbS5kYXRhIDwtIHJlYWRSRFMoIi4uL1FDLmZpbHRlcmVkLmNsdXN0ZXJlZC5jZWxscy5SRFMiKQpgYGAKCmBgYHtyfQpEaW1QbG90KG9iamVjdCA9IEhlbS5kYXRhLAogICAgICAgIGdyb3VwLmJ5ID0gIkNlbGxfaWRlbnQiLAogICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgIGNvbHMgPSBjKCIjZWJjYjJlIiwgIyJDUiIKICAgICAgICAgICAgIiNlNzgyM2EiLCAjIkNoUCIKICAgICAgICAgICAgIiM0Y2FiZGMiLCAjIENocF9wcm9nCiAgICAgICAgICAgICIjNjhiMDQxIiwgIyJEb3Jzby1NZWRpYWxfcGFsbGl1bSIgCiAgICAgICAgICAgICIjZTQ2YjZiIiwgIyJIZW0iIAogICAgICAgICAgICAiI2UzYzE0OCIsICMiTWVkaWFsX3BhbGxpdW0iCiAgICAgICAgICAgICIjMDQ2YzlhIiwgIyBQYWxsaWFsCiAgICAgICAgICAgICIjNDk5MGM5IiMiVGhhbGFtaWNfZW1pbmVuY2UiCiAgICAgICAgICAgICAgICAgICAgICkKICAgICAgICApCmBgYAoKYGBge3J9CkhlbS5kYXRhJExpbmVhZ2UgPC0gc2FwcGx5KEhlbS5kYXRhJENlbGxfaWRlbnQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEZVTiA9IGZ1bmN0aW9uKHgpIHsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZiAoeCAlaW4lIGMoIkNhamFsLVJldHppdXNfbmV1cm9ucyIsICJIZW0iKSkgewogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgeCA9ICJDYWphbC1SZXR6aXVzX25ldXJvbnMiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfSBlbHNlIGlmICh4ICVpbiUgYygiUGFsbGlhbF9uZXVyb25zIiwgIk1lZGlhbF9wYWxsaXVtIikpIHsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHggPSAiUGFsbGlhbF9uZXVyb25zIgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0gZWxzZSBpZih4ICVpbiUgYygiQ2hQIiwgIkNoUF9wcm9nZW5pdG9ycyIpKSB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgeCA9ICAiQ2hvcm9pZF9QbGV4dXMiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfSBlbHNlIHsKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHggPSAib3RoZXIiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0pCmBgYAoKYGBge3J9CkRpbVBsb3QoSGVtLmRhdGEsCiAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgZ3JvdXAuYnkgPSAiTGluZWFnZSIsCiAgICAgICAgcHQuc2l6ZSA9IDEsCiAgICAgICAgY29scyA9ICBjKCIjY2MzOTFiIiwiI2U3ODIzYSIsIiM5Njk2OTYiLCIjMDI2YzlhIikKICAgICAgICApICsgTm9BeGVzKCkKYGBgCgojIERpZmZlcmVudGlhdGluZyBuZXVyb25zIHRyYWplY3RvcnkKCmBgYHtyfQpOZXVyb25zLmRhdGEgPC0gIHN1YnNldChIZW0uZGF0YSwgaWRlbnRzID0gYygiQ2FqYWwtUmV0eml1c19uZXVyb25zIiwgIlBhbGxpYWxfbmV1cm9ucyIpKQoKRGltUGxvdChOZXVyb25zLmRhdGEgLAogICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgIHB0LnNpemUgPSAxLAogICAgICAgIGNvbHMgPSAgYygiI2NjMzkxYiIsIiMwMjZjOWEiKQogICAgICAgICkgKyBOb0F4ZXMoKQpgYGAKCiMjIEZpdCBwcmluY2lwYWxlIGN1cnZlIG9uIHRoZSB0d28gbGluZWFnZXMKCiMjIyBDYWphbC1SZXR6aXVzIGNlbGxzCgpgYGB7cn0KVHJhamVjdG9yaWVzLkhlbSA8LSBOZXVyb25zLmRhdGFAbWV0YS5kYXRhICU+JQogICAgICAgICAgICAgICAgICAgIHNlbGVjdCgiQmFyY29kZXMiLCAiblVNSSIsICJTcHJpbmdfMSIsICJTcHJpbmdfMiIsICJBUF9zaWduYXR1cmUxIiwiQlBfc2lnbmF0dXJlMSIsICJFTl9zaWduYXR1cmUxIiwgIkxOX3NpZ25hdHVyZTEiLCAiTGluZWFnZSIpICU+JQogICAgICAgICAgICAgICAgICAgIGZpbHRlcihMaW5lYWdlID09ICJDYWphbC1SZXR6aXVzX25ldXJvbnMiKQpgYGAKCmBgYHtyfQpmaXQgPC0gcHJpbmNpcGFsX2N1cnZlKGFzLm1hdHJpeChUcmFqZWN0b3JpZXMuSGVtWyxjKCJTcHJpbmdfMSIsICJTcHJpbmdfMiIpXSksCiAgICAgICAgICAgICAgICAgICAgICAgc21vb3RoZXI9J2xvd2VzcycsCiAgICAgICAgICAgICAgICAgICAgICAgdHJhY2U9VFJVRSwKICAgICAgICAgICAgICAgICAgICAgICBmID0gLjcsCiAgICAgICAgICAgICAgICAgICAgICAgc3RyZXRjaD0wKQoKI1RoZSBwcmluY2lwYWwgY3VydmUgc21vb3RoZWQKSGVtLnBjLmxpbmUgPC0gYXMuZGF0YS5mcmFtZShmaXQkc1tvcmRlcihmaXQkbGFtYmRhKSxdKSAKCiNQc2V1ZG90aW1lIHNjb3JlClRyYWplY3Rvcmllcy5IZW0kUHNldWRvdGltZVNjb3JlIDwtIGZpdCRsYW1iZGEvbWF4KGZpdCRsYW1iZGEpCgpgYGAKCmBgYHtyfQppZiAoY29yKFRyYWplY3Rvcmllcy5IZW0kUHNldWRvdGltZVNjb3JlLCBOZXVyb25zLmRhdGFAYXNzYXlzJFNDVEBkYXRhWydIbWdhMicsIFRyYWplY3Rvcmllcy5IZW0kQmFyY29kZXNdKSA+IDApIHsKICBUcmFqZWN0b3JpZXMuSGVtJFBzZXVkb3RpbWVTY29yZSA8LSAtKFRyYWplY3Rvcmllcy5IZW0kUHNldWRvdGltZVNjb3JlIC0gbWF4KFRyYWplY3Rvcmllcy5IZW0kUHNldWRvdGltZVNjb3JlKSkKfQpgYGAKCiMjIyBQYWxsaWFsIG5ldXJvbnMKCmBgYHtyfQpUcmFqZWN0b3JpZXMuUGFsbGlhbCA8LSBOZXVyb25zLmRhdGFAbWV0YS5kYXRhICU+JQogICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3QoIkJhcmNvZGVzIiwgIm5VTUkiLCAiU3ByaW5nXzEiLCAiU3ByaW5nXzIiLCAiQVBfc2lnbmF0dXJlMSIsIkJQX3NpZ25hdHVyZTEiLCAiRU5fc2lnbmF0dXJlMSIsICJMTl9zaWduYXR1cmUxIiwgIkxpbmVhZ2UiKSAlPiUKICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyKExpbmVhZ2UgPT0gIlBhbGxpYWxfbmV1cm9ucyIpCiAgICAgICAgICAgICAgICAgIApgYGAKCmBgYHtyfQpmaXQgPC0gcHJpbmNpcGFsX2N1cnZlKGFzLm1hdHJpeChUcmFqZWN0b3JpZXMuUGFsbGlhbFssYygiU3ByaW5nXzEiLCAiU3ByaW5nXzIiKV0pLAogICAgICAgICAgICAgICAgICAgICAgIHNtb290aGVyPSdsb3dlc3MnLAogICAgICAgICAgICAgICAgICAgICAgIHRyYWNlPVRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgZiA9IC43LAogICAgICAgICAgICAgICAgICAgICAgIHN0cmV0Y2g9MCkKCiNUaGUgcHJpbmNpcGFsIGN1cnZlIHNtb290aGVkClBhbGxpYWwucGMubGluZSA8LSBhcy5kYXRhLmZyYW1lKGZpdCRzW29yZGVyKGZpdCRsYW1iZGEpLF0pCgojUHNldWRvdGltZSBzY29yZQpUcmFqZWN0b3JpZXMuUGFsbGlhbCRQc2V1ZG90aW1lU2NvcmUgPC0gZml0JGxhbWJkYS9tYXgoZml0JGxhbWJkYSkKYGBgCgpgYGB7cn0KaWYgKGNvcihUcmFqZWN0b3JpZXMuUGFsbGlhbCRQc2V1ZG90aW1lU2NvcmUsIE5ldXJvbnMuZGF0YUBhc3NheXMkU0NUQGRhdGFbJ0htZ2EyJywgVHJhamVjdG9yaWVzLlBhbGxpYWwkQmFyY29kZXNdKSA+IDApIHsKICBUcmFqZWN0b3JpZXMuUGFsbGlhbCRQc2V1ZG90aW1lU2NvcmUgPC0gLShUcmFqZWN0b3JpZXMuUGFsbGlhbCRQc2V1ZG90aW1lU2NvcmUgLSBtYXgoVHJhamVjdG9yaWVzLlBhbGxpYWwkUHNldWRvdGltZVNjb3JlKSkKfQpgYGAKCiMjIENvbWJpbmUgdGhlIHR3byB0cmFqZWN0b3JpZXMnIGRhdGEKCmBgYHtyfQpUcmFqZWN0b3JpZXMubmV1cm9ucyA8LSByYmluZChUcmFqZWN0b3JpZXMuUGFsbGlhbCwgVHJhamVjdG9yaWVzLkhlbSkKYGBgCgpgYGB7cn0KY29scyA8LSBicmV3ZXIucGFsKG4gPTExLCBuYW1lID0gIlNwZWN0cmFsIikKCmdncGxvdChUcmFqZWN0b3JpZXMubmV1cm9ucywgYWVzKFNwcmluZ18xLCBTcHJpbmdfMikpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvcj1Qc2V1ZG90aW1lU2NvcmUpLCBzaXplPTIsIHNoYXBlPTE2KSArIAogIHNjYWxlX2NvbG9yX2dyYWRpZW50bihjb2xvdXJzPXJldihjb2xzKSwgbmFtZT0nU3BldWRvdGltZSBzY29yZScpICsKICBnZW9tX2xpbmUoZGF0YT1QYWxsaWFsLnBjLmxpbmUsIGNvbG9yPSIjMDI2YzlhIiwgc2l6ZT0wLjc3KSArCiAgZ2VvbV9saW5lKGRhdGE9SGVtLnBjLmxpbmUsIGNvbG9yPSIjY2MzOTFiIiwgc2l6ZT0wLjc3KQpgYGAKCiMjIFBsb3QgcGFuLW5ldXJvbmFsIGdlbmVzIGFsb25nIHRoaXMgYXhpcwoKYGBge3J9Ck5ldXJvbnMuZGF0YSA8LSBOb3JtYWxpemVEYXRhKE5ldXJvbnMuZGF0YSwgbm9ybWFsaXphdGlvbi5tZXRob2QgPSAiTG9nTm9ybWFsaXplIiwgc2NhbGUuZmFjdG9yID0gMTAwMDAsIGFzc2F5ID0gIlJOQSIpCmBgYAoKYGBge3IgZmlnLmRpbT1jKDksMTApfQojIE5ldXJvZzIKcDEgPC0gRmVhdHVyZVBsb3Qob2JqZWN0ID0gTmV1cm9ucy5kYXRhLAogICAgICAgICAgICBmZWF0dXJlcyA9IGMoIk5ldXJvZzIiKSwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICAgICAgY29scyA9IGMoImdyZXk5MCIsIGJyZXdlci5wYWwoOSwiWWxHbkJ1IikpLAogICAgICAgICAgICByZWR1Y3Rpb24gPSAic3ByaW5nIiwKICAgICAgICAgICAgb3JkZXIgPSBUKSAmIE5vQXhlcygpCgpUcmFqZWN0b3JpZXMubmV1cm9ucyROZXVyb2cyIDwtIE5ldXJvbnMuZGF0YUBhc3NheXMkUk5BQGRhdGFbIk5ldXJvZzIiLCBUcmFqZWN0b3JpZXMubmV1cm9ucyRCYXJjb2Rlc10KCnAyIDwtIGdncGxvdChUcmFqZWN0b3JpZXMubmV1cm9ucywgYWVzKHg9IFBzZXVkb3RpbWVTY29yZSwgeT0gTmV1cm9nMikpICsKICAgICAgICBnZW9tX3BvaW50KGFlcyhjb2xvcj0gTGluZWFnZSksIHNpemU9MC41KSArCiAgICAgICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcz0gYygiI2NjMzkxYiIsICIjMDI2YzlhIikpICsKICAgICAgICBnZW9tX3Ntb290aChtZXRob2Q9ImxvZXNzIiwgbj0gNTAsIGFlcyhjb2xvcj0gTGluZWFnZSkpICsKICAgICAgICB5bGltKDAsTkEpCgojIFRicjEgCnAzIDwtIEZlYXR1cmVQbG90KG9iamVjdCA9IE5ldXJvbnMuZGF0YSAsCiAgICAgICAgICAgIGZlYXR1cmVzID0gYygiVGJyMSIpLAogICAgICAgICAgICBwdC5zaXplID0gMC41LAogICAgICAgICAgICBjb2xzID0gYygiZ3JleTkwIiwgYnJld2VyLnBhbCg5LCJZbEduQnUiKSksCiAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgICAgICBvcmRlciA9IFQpICYgTm9BeGVzKCkKVHJhamVjdG9yaWVzLm5ldXJvbnMkVGJyMSA8LSBOZXVyb25zLmRhdGFAYXNzYXlzJFJOQUBkYXRhWyJUYnIxIiwgVHJhamVjdG9yaWVzLm5ldXJvbnMkQmFyY29kZXNdCgpwNCA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLm5ldXJvbnMsIGFlcyh4PSBQc2V1ZG90aW1lU2NvcmUsIHk9IFRicjEpKSArCiAgICAgICAgZ2VvbV9wb2ludChhZXMoY29sb3I9IExpbmVhZ2UpLCBzaXplPTAuNSkgKwogICAgICAgIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9IGMoIiNjYzM5MWIiLCAiIzAyNmM5YSIpKSArCiAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsb2VzcyIsIG49IDUwLCBhZXMoY29sb3I9IExpbmVhZ2UpKSArCiAgICAgICAgeWxpbSgwLE5BKQoKIyBNYXB0IApwNSA8LSBGZWF0dXJlUGxvdChvYmplY3QgPSBOZXVyb25zLmRhdGEgLAogICAgICAgICAgICBmZWF0dXJlcyA9IGMoIk1hcHQiKSwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICAgICAgY29scyA9IGMoImdyZXk5MCIsIGJyZXdlci5wYWwoOSwiWWxHbkJ1IikpLAogICAgICAgICAgICByZWR1Y3Rpb24gPSAic3ByaW5nIiwKICAgICAgICAgICAgb3JkZXIgPSBUKSAmIE5vQXhlcygpCgpUcmFqZWN0b3JpZXMubmV1cm9ucyRNYXB0IDwtIE5ldXJvbnMuZGF0YUBhc3NheXMkUk5BQGRhdGFbIk1hcHQiLCBUcmFqZWN0b3JpZXMubmV1cm9ucyRCYXJjb2Rlc10KCnA2IDwtIGdncGxvdChUcmFqZWN0b3JpZXMubmV1cm9ucywgYWVzKHg9IFBzZXVkb3RpbWVTY29yZSwgeT0gTWFwdCkpICsKICAgICAgICBnZW9tX3BvaW50KGFlcyhjb2xvcj0gTGluZWFnZSksIHNpemU9MC41KSArCiAgICAgICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcz0gYygiI2NjMzkxYiIsICIjMDI2YzlhIikpICsKICAgICAgICBnZW9tX3Ntb290aChtZXRob2Q9ImxvZXNzIiwgbj0gNTAsIGFlcyhjb2xvcj0gTGluZWFnZSkpICsKICAgICAgICB5bGltKDAsTkEpCgpwMSArIHAyICsgcDMgKyBwNCArIHA1ICsgcDYgKyBwYXRjaHdvcms6OnBsb3RfbGF5b3V0KG5jb2wgPSAyKQpgYGAKCiMjIFNoaWZ0IFBzZXVkb3RpbWUgaW4gYm90aCBsaW5lYWdlCgpTaW5jZSB3ZSBvYnNlcnZlIHRoZSBmaXJzdCAyNSUgb2YgYm90aCB0cmFqZWN0b3JpZXMgYXJlIG9jY3VwaWVkIGJ5IGZldywgbGlrZWx5IHByb2dlbml0b3IgY2VsbHMsIHdlIHNoaWZ0IHRoaXMgY2VsbCBhbG9uZyB0aGUgYXhpcwoKYGBge3J9ClBzZXVkb3RpbWUuaW50ZXJ2YWxzIDwtIFRyYWplY3Rvcmllcy5uZXVyb25zJT4lCiAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0KExpbmVhZ2UsIFBzZXVkb3RpbWVTY29yZSkgJT4lCiAgICAgICAgICAgICAgICAgICAgICAgICAgbXV0YXRlKFBzZXVkb3RpbWUuYmlucyA9IGN1dChUcmFqZWN0b3JpZXMubmV1cm9ucyRQc2V1ZG90aW1lU2NvcmUsIHNlcSgwLCBtYXgoVHJhamVjdG9yaWVzLm5ldXJvbnMkUHNldWRvdGltZVNjb3JlKSArIDAuMDUsIDAuMDUpLCBkaWcubGFiID0gMiwgcmlnaHQgPSBGQUxTRSkpICU+JQogICAgICAgICAgICAgICAgICAgICAgICAgIGdyb3VwX2J5KExpbmVhZ2UsIFBzZXVkb3RpbWUuYmlucykgJT4lCiAgICAgICAgICAgICAgICAgICAgICAgICAgc3VtbWFyaXNlKG49bigpKQoKZ2dwbG90KFBzZXVkb3RpbWUuaW50ZXJ2YWxzLCBhZXMoeD1Qc2V1ZG90aW1lLmJpbnMsIHk9biwgZmlsbD1MaW5lYWdlKSkgKwogICAgICAgIGdlb21fYmFyKHN0YXQgPSAiaWRlbnRpdHkiLCB3aWR0aCA9IDAuOTApICsKICAgICAgICB0aGVtZShheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChhbmdsZSA9IDQ1LCBoanVzdD0xKSkrCiAgICAgICAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzPSBjKCIjY2MzOTFiIiwgIiMwMjZjOWEiKSkKYGBgCgpgYGB7cn0Kc2NvcmUgPC0gc2FwcGx5KFRyYWplY3Rvcmllcy5uZXVyb25zJFBzZXVkb3RpbWVTY29yZSwKICAgICAgICAgICAgICAgIEZVTiA9IGZ1bmN0aW9uKHgpIGlmICh4IDw9IDAuMikge3g9IDAuMn0gZWxzZSB7IHg9eCB9KQoKVHJhamVjdG9yaWVzLm5ldXJvbnMkUHNldWRvdGltZVNjb3JlLnNoaWZ0ZWQgPC0gKHNjb3JlIC0gbWluKHNjb3JlKSkgLyAobWF4KHNjb3JlKSAtIG1pbihzY29yZSkpCmBgYAoKYGBge3IgZmlnLmRpbT1jKDksMTApfQojIE5ldXJvZzIKcDEgPC0gRmVhdHVyZVBsb3Qob2JqZWN0ID0gTmV1cm9ucy5kYXRhICwKICAgICAgICAgICAgZmVhdHVyZXMgPSBjKCJOZXVyb2cyIiksCiAgICAgICAgICAgIHB0LnNpemUgPSAwLjUsCiAgICAgICAgICAgIGNvbHMgPSBjKCJncmV5OTAiLCBicmV3ZXIucGFsKDksIllsR25CdSIpKSwKICAgICAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgICAgIG9yZGVyID0gVCkgJiBOb0F4ZXMoKQoKcDIgPC0gZ2dwbG90KFRyYWplY3Rvcmllcy5uZXVyb25zLCBhZXMoeD0gUHNldWRvdGltZVNjb3JlLnNoaWZ0ZWQsIHk9IE5ldXJvZzIpKSArCiAgICAgICAgZ2VvbV9wb2ludChhZXMoY29sb3I9IExpbmVhZ2UpLCBzaXplPTAuNSkgKwogICAgICAgIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9IGMoIiNjYzM5MWIiLCAiIzAyNmM5YSIpKSArCiAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsb2VzcyIsIG49IDUwLCBhZXMoY29sb3I9IExpbmVhZ2UpKSArCiAgICAgICAgeWxpbSgwLE5BKQoKIyBUYnIxIApwMyA8LSBGZWF0dXJlUGxvdChvYmplY3QgPSBOZXVyb25zLmRhdGEgLAogICAgICAgICAgICBmZWF0dXJlcyA9IGMoIlRicjEiKSwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICAgICAgY29scyA9IGMoImdyZXk5MCIsIGJyZXdlci5wYWwoOSwiWWxHbkJ1IikpLAogICAgICAgICAgICByZWR1Y3Rpb24gPSAic3ByaW5nIiwKICAgICAgICAgICAgb3JkZXIgPSBUKSAmIE5vQXhlcygpCgpwNCA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLm5ldXJvbnMsIGFlcyh4PSBQc2V1ZG90aW1lU2NvcmUuc2hpZnRlZCwgeT0gVGJyMSkpICsKICAgICAgICBnZW9tX3BvaW50KGFlcyhjb2xvcj0gTGluZWFnZSksIHNpemU9MC41KSArCiAgICAgICAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcz0gYygiI2NjMzkxYiIsICIjMDI2YzlhIikpICsKICAgICAgICBnZW9tX3Ntb290aChtZXRob2Q9ImxvZXNzIiwgbj0gNTAsIGFlcyhjb2xvcj0gTGluZWFnZSkpICsKICAgICAgICB5bGltKDAsTkEpCgojIE1hcHQgCnA1IDwtIEZlYXR1cmVQbG90KG9iamVjdCA9IE5ldXJvbnMuZGF0YSAsCiAgICAgICAgICAgIGZlYXR1cmVzID0gYygiTWFwdCIpLAogICAgICAgICAgICBwdC5zaXplID0gMC41LAogICAgICAgICAgICBjb2xzID0gYygiZ3JleTkwIiwgYnJld2VyLnBhbCg5LCJZbEduQnUiKSksCiAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgICAgICBvcmRlciA9IFQpICYgTm9BeGVzKCkKCnA2IDwtIGdncGxvdChUcmFqZWN0b3JpZXMubmV1cm9ucywgYWVzKHg9IFBzZXVkb3RpbWVTY29yZS5zaGlmdGVkLCB5PSBNYXB0KSkgKwogICAgICAgIGdlb21fcG9pbnQoYWVzKGNvbG9yPSBMaW5lYWdlKSwgc2l6ZT0wLjUpICsKICAgICAgICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPSBjKCIjY2MzOTFiIiwgIiMwMjZjOWEiKSkgKwogICAgICAgIGdlb21fc21vb3RoKG1ldGhvZD0ibG9lc3MiLCBuPSA1MCwgYWVzKGNvbG9yPSBMaW5lYWdlKSkgKwogICAgICAgIHlsaW0oMCxOQSkKCnAxICsgcDIgKyBwMyArIHA0ICsgcDUgKyBwNiArIHBhdGNod29yazo6cGxvdF9sYXlvdXQobmNvbCA9IDIpCmBgYAoKYGBge3J9CmdncGxvdChUcmFqZWN0b3JpZXMubmV1cm9ucywgYWVzKHg9IFBzZXVkb3RpbWVTY29yZS5zaGlmdGVkLCB5PSBuVU1JLzEwMDAwKSkgKwogICAgICAgIGdlb21fcG9pbnQoYWVzKGNvbG9yPSBMaW5lYWdlKSwgc2l6ZT0wLjUpICsKICAgICAgICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPSBjKCIjY2MzOTFiIiwgIiMwMjZjOWEiKSkgKwogICAgICAgIGdlb21fc21vb3RoKG1ldGhvZD0ibG9lc3MiLCBuPSA1MCwgYWVzKGNvbG9yPSBMaW5lYWdlKSkgKwogICAgICAgIHlsaW0oMCxOQSkKYGBgCgpgYGB7cn0Kcm0obGlzdCA9IGxzKClbIWxzKCkgJWluJSBjKCJUcmFqZWN0b3JpZXMubmV1cm9ucyIpXSkKYGBgCgojIExvYWQgcHJvZ2VuaXRvcnMgd2l0aCBjZWxsIGN5Y2xlIHRyYWplY3RvcnkgZml0dGVkCgpgYGB7cn0KUHJvZ2VuaXRvcnMuZGF0YSA8LSByZWFkUkRTKCIuLi9Qcm9nZW5pdG9yc0RpdmVyc2l0eS9Qcm9nZW5pdG9ycy5SRFMiKQpgYGAKCmBgYHtyfQp0YWJsZShQcm9nZW5pdG9ycy5kYXRhJENlbGxfaWRlbnQpCmBgYAoKVG8gYmFsYW5jZSB0aGUgbnVtYmVyIG9mIHByb2dlbml0b3JzIGluIGJvdGggZG9tYWluIHdlIHdpbGwgb25seSB3b3JrIHdpdGggKkhlbSogYW5kICpNZWRpYWxfcGFsbGl1bSogYW5ub3RhdGVkIGNlbGxzLiBTaW5jZSB3ZSBhcmUgdXNpbmcgcGFsbGlhbCBjZWxsIHRvIGNvbnRyYXN0IENSIHNwZWNpZmljIHRyYWplY3Rvcnkgd2UgdGhpbmsgdGhpcyBhcHByb3hpbWF0aW9uIHdpbGwgbm90IHNpZ25pZmljYW50bHkgYWZmZWN0IG91ciBhbmFseXNpcy4KCmBgYHtyfQpQcm9nZW5pdG9ycy5kYXRhIDwtICBzdWJzZXQoUHJvZ2VuaXRvcnMuZGF0YSwgaWRlbnRzID0gYygiSGVtIiwgIk1lZGlhbF9wYWxsaXVtIikpCmBgYAoKYGBge3IgZmlnLmRpbT1jKDYsIDQpfQpwMSA8LSBEaW1QbG90KFByb2dlbml0b3JzLmRhdGEsCiAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICBjb2xzID0gIGMoIiNlM2MxNDgiLCAiI2U0NmI2YiIpKSArIE5vQXhlcygpCgpwMiA8LSBGZWF0dXJlUGxvdChvYmplY3QgPSBQcm9nZW5pdG9ycy5kYXRhLAogICAgICAgICAgICBmZWF0dXJlcyA9ICJSZXZlbGlvLmNjIiwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICAgICAgY29scyA9IHJldihicmV3ZXIucGFsKDEwLCJTcGVjdHJhbCIpKSwKICAgICAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgICAgIG9yZGVyID0gVCkgJiBOb0F4ZXMoKQoKcDMgPC0gRGltUGxvdChvYmplY3QgPSBQcm9nZW5pdG9ycy5kYXRhLAogICAgICAgIGdyb3VwLmJ5ID0gIlJldmVsaW8ucGhhc2UiLAogICAgICAgIHB0LnNpemUgPSAwLjUsCiAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgY29scyA9ICBjKHdlc19wYWxldHRlKCJGYW50YXN0aWNGb3gxIilbMTozXSwiZ3JleTQwIix3ZXNfcGFsZXR0ZSgiRmFudGFzdGljRm94MSIpWzVdKSkgJiBOb0F4ZXMoKQoKcDEgKyBwMiArIHAzICArIHBhdGNod29yazo6cGxvdF9sYXlvdXQobmNvbCA9IDIpCmBgYAoKIyBDb21iaW5lZCBwcm9nZW5pdG9ycyBhbmQgbmV1cm9ucyBhbG9uZyBQc2V1ZG90aW1lCgpgYGB7cn0KIyBTdGFydCB3aXRoIG5ldXJvbnMgZGF0YQpUcmFqZWN0b3JpZXMuYWxsIDwtIFRyYWplY3Rvcmllcy5uZXVyb25zICU+JSBzZWxlY3QoQmFyY29kZXMsIG5VTUksIFNwcmluZ18xLCBTcHJpbmdfMiwgQVBfc2lnbmF0dXJlMSwgQlBfc2lnbmF0dXJlMSwgRU5fc2lnbmF0dXJlMSwgTE5fc2lnbmF0dXJlMSwgTGluZWFnZSkKClRyYWplY3Rvcmllcy5hbGwkUHNldWRvdGltZSA8LSBUcmFqZWN0b3JpZXMubmV1cm9ucyRQc2V1ZG90aW1lU2NvcmUuc2hpZnRlZCArIDAuNQpUcmFqZWN0b3JpZXMuYWxsJFBoYXNlIDwtIE5BCmBgYAoKYGBge3J9CiMgQWRkIHByb2dlbml0b3JzIGRhdGEKVHJhamVjdG9yaWVzLnByb2dlbml0b3JzIDwtIFByb2dlbml0b3JzLmRhdGFAbWV0YS5kYXRhICU+JQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3QoQmFyY29kZXMsIG5VTUksIFNwcmluZ18xLCBTcHJpbmdfMiwgQVBfc2lnbmF0dXJlMSwgQlBfc2lnbmF0dXJlMSwgRU5fc2lnbmF0dXJlMSwgTE5fc2lnbmF0dXJlMSkgJT4lIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtdXRhdGUoTGluZWFnZT0gaWZlbHNlKFByb2dlbml0b3JzLmRhdGEkQ2VsbF9pZGVudCA9PSAiTWVkaWFsX3BhbGxpdW0iLCAiUGFsbGlhbF9uZXVyb25zIiwgIkNhamFsLVJldHppdXNfbmV1cm9ucyIpICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBzZXVkb3RpbWU9IFByb2dlbml0b3JzLmRhdGEkUmV2ZWxpby5jYy8yLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgUGhhc2UgPSBQcm9nZW5pdG9ycy5kYXRhJFJldmVsaW8ucGhhc2UpCmBgYAoKYGBge3J9ClRyYWplY3Rvcmllcy5hbGwgPC0gcmJpbmQoVHJhamVjdG9yaWVzLmFsbCwgVHJhamVjdG9yaWVzLnByb2dlbml0b3JzKQoKVHJhamVjdG9yaWVzLmFsbCRQaGFzZSA8LSBmYWN0b3IoVHJhamVjdG9yaWVzLmFsbCRQaGFzZSwgbGV2ZWxzID0gYygiRzEuUyIsICJTIiwgIkcyIiwgIkcyLk0iLCAiTS5HMSIpKQpgYGAKCmBgYHtyIGZpZy5kaW09Yyg5LDMpfQpwMSA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLmFsbCwgYWVzKFNwcmluZ18xLCBTcHJpbmdfMikpICsKICAgICAgICBnZW9tX3BvaW50KGFlcyhjb2xvcj1Qc2V1ZG90aW1lKSwgc2l6ZT0wLjUpICsgCiAgICAgICAgc2NhbGVfY29sb3JfZ3JhZGllbnRuKGNvbG91cnM9cmV2KGJyZXdlci5wYWwobiA9MTEsIG5hbWUgPSAiU3BlY3RyYWwiKSksIG5hbWU9J1BzZXVkb3RpbWUgc2NvcmUnKQoKcDIgPC0gZ2dwbG90KFRyYWplY3Rvcmllcy5hbGwsIGFlcyhTcHJpbmdfMSwgU3ByaW5nXzIpKSArCiAgICAgICAgZ2VvbV9wb2ludChhZXMoY29sb3I9IExpbmVhZ2UpLCBzaXplPTAuNSkgKwogICAgICAgIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9IGMoIiNjYzM5MWIiLCAiIzAyNmM5YSIpKQoKcDEgKyBwMgpgYGAKCmBgYHtyIGZpZy5kaW09Yyg5LDMpfQpwMSA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLmFsbCwgYWVzKHg9IFBzZXVkb3RpbWUsIHk9IG5VTUkvMTAwMDApKSArCiAgICAgICAgZ2VvbV9wb2ludChhZXMoY29sb3I9IFBoYXNlKSwgc2l6ZT0wLjUpICsKICAgICAgICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPSBjKHdlc19wYWxldHRlKCJGYW50YXN0aWNGb3gxIilbMTozXSwiZ3JleTQwIix3ZXNfcGFsZXR0ZSgiRmFudGFzdGljRm94MSIpWzVdKSkgKwogICAgICAgIGdlb21fc21vb3RoKG1ldGhvZD0ibG9lc3MiLCBuPSA1MCwgZmlsbD0iZ3JleSIpICsKICAgICAgICB5bGltKDAsTkEpCgpwMiA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLmFsbCwgYWVzKHg9IFBzZXVkb3RpbWUsIHk9IG5VTUkvMTAwMDApKSArCiAgICAgICAgZ2VvbV9wb2ludChhZXMoY29sb3I9IExpbmVhZ2UpLCBzaXplPTAuNSkgKwogICAgICAgIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9IGMoIiNjYzM5MWIiLCAiIzAyNmM5YSIpKSArCiAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsb2VzcyIsIG49IDUwLCBmaWxsPSJncmV5IikgKwogICAgICAgIHlsaW0oMCxOQSkKCnAxIC8gcDIKYGBgCmBgYHtyfQpwMSA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLmFsbCwgYWVzKHg9IFBzZXVkb3RpbWUsIHk9IEFQX3NpZ25hdHVyZTEpKSArCiAgZ2VvbV9wb2ludChhZXMoY29sb3I9IExpbmVhZ2UpLCBzaXplPTAuNSkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9IGMoIiNjYzM5MWIiLCAiIzAyNmM5YSIpKSArCiAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsb2VzcyIsIG49IDUwLCBmaWxsPSJncmV5IikKCgpwMiA8LSBnZ3Bsb3QoVHJhamVjdG9yaWVzLmFsbCwgYWVzKHg9IFBzZXVkb3RpbWUsIHk9IEJQX3NpZ25hdHVyZTEpKSArCiAgZ2VvbV9wb2ludChhZXMoY29sb3I9IExpbmVhZ2UpLCBzaXplPTAuNSkgKwogIHNjYWxlX2NvbG9yX21hbnVhbCh2YWx1ZXM9IGMoIiNjYzM5MWIiLCAiIzAyNmM5YSIpKSArCiAgZ2VvbV9zbW9vdGgobWV0aG9kPSJsb2VzcyIsIG49IDUwLCBmaWxsPSJncmV5IikKCnAzIDwtIGdncGxvdChUcmFqZWN0b3JpZXMuYWxsLCBhZXMoeD0gUHNldWRvdGltZSwgeT0gRU5fc2lnbmF0dXJlMSkpICsKICBnZW9tX3BvaW50KGFlcyhjb2xvcj0gTGluZWFnZSksIHNpemU9MC41KSArCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcz0gYygiI2NjMzkxYiIsICIjMDI2YzlhIikpICsKICBnZW9tX3Ntb290aChtZXRob2Q9ImxvZXNzIiwgbj0gNTAsIGZpbGw9ImdyZXkiKQoKcDQgPC0gZ2dwbG90KFRyYWplY3Rvcmllcy5hbGwsIGFlcyh4PSBQc2V1ZG90aW1lLCB5PSBMTl9zaWduYXR1cmUxKSkgKwogIGdlb21fcG9pbnQoYWVzKGNvbG9yPSBMaW5lYWdlKSwgc2l6ZT0wLjUpICsKICBzY2FsZV9jb2xvcl9tYW51YWwodmFsdWVzPSBjKCIjY2MzOTFiIiwgIiMwMjZjOWEiKSkgKwogIGdlb21fc21vb3RoKG1ldGhvZD0ibG9lc3MiLCBuPSA1MCwgZmlsbD0iZ3JleSIpCgoKcDEgLyBwMiAvIHAzIC8gcDQKYGBgCgoKYGBge3J9CnJtKGxpc3QgPSBscygpWyFscygpICVpbiUgYygiVHJhamVjdG9yaWVzLmFsbCIpXSkKYGBgCgojIFN1YnNldCB0aGUgZnVsbCBkYXRhc2V0IFNldXJhdCBvYmplY3QKCmBgYHtyfQpIZW0uZGF0YSA8LSByZWFkUkRTKCIuLi9RQy5maWx0ZXJlZC5jbHVzdGVyZWQuY2VsbHMuUkRTIikKYGBgCgpgYGB7cn0KTmV1cm8udHJhamVjdG9yaWVzIDwtIENyZWF0ZVNldXJhdE9iamVjdChjb3VudHMgPSBIZW0uZGF0YUBhc3NheXMkUk5BQGRhdGFbLCBUcmFqZWN0b3JpZXMuYWxsJEJhcmNvZGVzXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtZXRhLmRhdGEgPSBUcmFqZWN0b3JpZXMuYWxsKQoKc3ByaW5nIDwtIGFzLm1hdHJpeChOZXVyby50cmFqZWN0b3JpZXNAbWV0YS5kYXRhICU+JSBzZWxlY3QoIlNwcmluZ18xIiwgIlNwcmluZ18yIikpCiAgCk5ldXJvLnRyYWplY3Rvcmllc1tbInNwcmluZyJdXSA8LSBDcmVhdGVEaW1SZWR1Y09iamVjdChlbWJlZGRpbmdzID0gc3ByaW5nLCBrZXkgPSAiU3ByaW5nXyIsIGFzc2F5ID0gRGVmYXVsdEFzc2F5KE5ldXJvLnRyYWplY3RvcmllcykpCmBgYAoKYGBge3IgZmlnLmRpbT1jKDYsIDEyKX0KcDEgPC0gRmVhdHVyZVBsb3Qob2JqZWN0ID0gTmV1cm8udHJhamVjdG9yaWVzLAogICAgICAgICAgICBmZWF0dXJlcyA9ICJQc2V1ZG90aW1lIiwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICAgICAgY29scyA9IHJldihjb2xvclJhbXBQYWxldHRlKGJyZXdlci5wYWwobiA9MTEsIG5hbWUgPSAiU3BlY3RyYWwiKSkoMTAwKSksCiAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgICAgICBvcmRlciA9IFQpICYgTm9BeGVzKCkKCnAyIDwtIERpbVBsb3Qob2JqZWN0ID0gTmV1cm8udHJhamVjdG9yaWVzLAogICAgICAgIGdyb3VwLmJ5ID0gIkxpbmVhZ2UiLAogICAgICAgIHB0LnNpemUgPSAwLjUsCiAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgY29scyA9ICBjKCIjY2MzOTFiIiwgIiMwMjZjOWEiKSkgJiBOb0F4ZXMoKQoKCnAzIDwtIERpbVBsb3Qob2JqZWN0ID0gTmV1cm8udHJhamVjdG9yaWVzLAogICAgICAgIGdyb3VwLmJ5ID0gIlBoYXNlIiwKICAgICAgICBwdC5zaXplID0gMC41LAogICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgIGNvbHMgPSAgYyh3ZXNfcGFsZXR0ZSgiRmFudGFzdGljRm94MSIpWzE6M10sImdyZXk0MCIsd2VzX3BhbGV0dGUoIkZhbnRhc3RpY0ZveDEiKVs1XSkpICYgTm9BeGVzKCkKCnAxICsgcDIgKyBwMwpgYGAKCgpgYGB7cn0Kcm0obGlzdCA9IGxzKClbIWxzKCkgJWluJSBjKCJOZXVyby50cmFqZWN0b3JpZXMiKV0pCmBgYAoKIyMgTm9ybWFsaXphdGlvbgoKYGBge3J9Ck5ldXJvLnRyYWplY3RvcmllczwtIE5vcm1hbGl6ZURhdGEoTmV1cm8udHJhamVjdG9yaWVzLCBub3JtYWxpemF0aW9uLm1ldGhvZCA9ICJMb2dOb3JtYWxpemUiLCBzY2FsZS5mYWN0b3IgPSAxMDAwMCwgYXNzYXkgPSAiUk5BIikKYGBgCgpgYGB7cn0KTmV1cm8udHJhamVjdG9yaWVzIDwtIEZpbmRWYXJpYWJsZUZlYXR1cmVzKE5ldXJvLnRyYWplY3Rvcmllcywgc2VsZWN0aW9uLm1ldGhvZCA9ICJkaXNwIiwgbmZlYXR1cmVzID0gMzAwMCwgYXNzYXkgPSAiUk5BIikKYGBgCgojIyBQbG90IHNvbWUgZ2VuZXMgYWxvbmcgcHNldWRvdGltZQoKYGBge3IgZmlnLmRpbT1jKDksOCl9CnNvdXJjZSgiLi4vRnVuY3Rpb25zL2Z1bmN0aW9uc19HZW5lVHJlbmRzLlIiKQoKUGxvdC5HZW5lcy50cmVuZChTZXVyYXQuZGF0YT0gTmV1cm8udHJhamVjdG9yaWVzLAogICAgICAgICAgICAgICAgIGdyb3VwLmJ5ID0gIkxpbmVhZ2UiLAogICAgICAgICAgICAgICAgIGdlbmVzPSBjKCJHYXMxIiwiU294MiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIk5ldXJvZzIiLCAiQnRnMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIlRicjEiLCAiTWFwdCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIlRycDczIiwgIkZveGcxIikpCmBgYAoKYGBge3IgZmlnLmRpbT1jKDksNil9ClBsb3QuR2VuZXMudHJlbmQoU2V1cmF0LmRhdGE9IE5ldXJvLnRyYWplY3RvcmllcywKICAgICAgICAgICAgICAgICBncm91cC5ieSA9ICJMaW5lYWdlIiwKICAgICAgICAgICAgICAgICBnZW5lcz0gYygiR21uYyIsICJNY2lkYXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICJGb3hqMSIsICJUcnA3MyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIkxoeDEiLCAiQ2RrbjFhIikpCmBgYAoKYGBge3IgZmlnLmRpbT1jKDksNSl9ClBsb3QuR2VuZXMudHJlbmQoU2V1cmF0LmRhdGE9IE5ldXJvLnRyYWplY3RvcmllcywKICAgICAgICAgICAgICAgICBncm91cC5ieSA9ICJMaW5lYWdlIiwKICAgICAgICAgICAgICAgICBnZW5lcz0gYygiTWtpNjciLCAiVG9wMmEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICJIMmFmeCIsICJDZGtuMWMiKSkKYGBgCgojIFVzZSBtb25vY2xlMiB0byBtb2RlbCBnZW5lIGV4cHJlc3Npb24gYWxvbmcgY3ljbGluZyBheGlzCgojIyBJbml0aWFsaXplIGEgbW9ub2NsZSBvYmplY3QKCmBgYHtyfQojIFRyYW5zZmVyIG1ldGFkYXRhCm1ldGEuZGF0YSA8LSBkYXRhLmZyYW1lKEJhcmNvZGU9IE5ldXJvLnRyYWplY3RvcmllcyRCYXJjb2RlcywKICAgICAgICAgICAgICAgICAgICAgICAgTGluZWFnZT0gTmV1cm8udHJhamVjdG9yaWVzJExpbmVhZ2UsCiAgICAgICAgICAgICAgICAgICAgICAgIFBzZXVkb3RpbWU9IE5ldXJvLnRyYWplY3RvcmllcyRQc2V1ZG90aW1lLAogICAgICAgICAgICAgICAgICAgICAgICBQaGFzZT0gTmV1cm8udHJhamVjdG9yaWVzJFBoYXNlKQoKQW5ub3QuZGF0YSAgPC0gbmV3KCdBbm5vdGF0ZWREYXRhRnJhbWUnLCBkYXRhID0gbWV0YS5kYXRhKQoKIyBUcmFuc2ZlciBjb3VudHMgZGF0YQp2YXIuZ2VuZXMgPC0gTmV1cm8udHJhamVjdG9yaWVzW1siUk5BIl1dQHZhci5mZWF0dXJlcwpjb3VudC5kYXRhID0gZGF0YS5mcmFtZShnZW5lX3Nob3J0X25hbWUgPSByb3duYW1lcyhOZXVyby50cmFqZWN0b3JpZXNbWyJSTkEiXV1AZGF0YVt2YXIuZ2VuZXMsXSksCiAgICAgICAgICAgICAgICAgICAgICAgIHJvdy5uYW1lcyA9IHJvd25hbWVzKE5ldXJvLnRyYWplY3Rvcmllc1tbIlJOQSJdXUBkYXRhW3Zhci5nZW5lcyxdKSkKCmZlYXR1cmUuZGF0YSA8LSBuZXcoJ0Fubm90YXRlZERhdGFGcmFtZScsIGRhdGEgPSBjb3VudC5kYXRhKQoKIyBDcmVhdGUgdGhlIENlbGxEYXRhU2V0IG9iamVjdCBpbmNsdWRpbmcgdmFyaWFibGUgZ2VuZXMgb25seQpnYm1fY2RzIDwtIG5ld0NlbGxEYXRhU2V0KE5ldXJvLnRyYWplY3Rvcmllc1tbIlJOQSJdXUBjb3VudHNbdmFyLmdlbmVzLF0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgcGhlbm9EYXRhID0gQW5ub3QuZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlRGF0YSA9IGZlYXR1cmUuZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICBsb3dlckRldGVjdGlvbkxpbWl0ID0gMCwKICAgICAgICAgICAgICAgICAgICAgICAgICBleHByZXNzaW9uRmFtaWx5ID0gbmVnYmlub21pYWwoKSkKYGBgCgpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpnYm1fY2RzIDwtIGVzdGltYXRlU2l6ZUZhY3RvcnMoZ2JtX2NkcykKZ2JtX2NkcyA8LSBlc3RpbWF0ZURpc3BlcnNpb25zKGdibV9jZHMpCmdibV9jZHMgPC0gZGV0ZWN0R2VuZXMoZ2JtX2NkcywgbWluX2V4cHIgPSAwLjEpCmBgYAoKYGBge3J9CnJtKGxpc3QgPSBscygpWyFscygpICVpbiUgYygiTmV1cm8udHJhamVjdG9yaWVzIiwgImdibV9jZHMiLCAiR2VuZS5UcmVuZCIsICJQbG90LkdlbmVzLnRyZW5kIildKQpnYygpCmBgYAojIyBGaW5kIFBhbi1uZXVyb25hbCBnZW5lcwoKYGBge3J9CiMgU3BsaXQgcGFsbGlhbCBhbmQgc3VicGFsbGlhbCBjZWxscyBmb3IgZ2VuZSBleHByZXNzaW9uIGZpdHRpbmcKI1BhbGxpYWwgY2VsbHMKUGFsbGlhbGNlbGxzIDwtIE5ldXJvLnRyYWplY3Rvcmllc0BtZXRhLmRhdGEgJT4lCiAgICAgICAgICAgICAgICBmaWx0ZXIoTGluZWFnZSA9PSAiUGFsbGlhbF9uZXVyb25zIikgJT4lCiAgICAgICAgICAgICAgICBwdWxsKEJhcmNvZGVzKQoKIyBDYWphbC1SZXR6aXVzIGNlbGxzCkNSY2VsbHMgPC0gTmV1cm8udHJhamVjdG9yaWVzQG1ldGEuZGF0YSAlPiUKICAgICAgICAgICAgICAgICAgIGZpbHRlcihMaW5lYWdlID09ICJDYWphbC1SZXR6aXVzX25ldXJvbnMiKSAlPiUKICAgICAgICAgICAgICAgICAgIHB1bGwoQmFyY29kZXMpCmBgYAoKYGBge3J9CiMgV2UgZmlsdGVyLW91dCBnZW5lcyBkZXRlY3RlZCBpbiBsZXNzIHRoYW4gMjAwIG9yIDIwMCBjZWxscyBhbG9uZyBQYWxsaWFsIG9yIENSIGxpbmVhZ2VzCm51bS5jZWxscyA8LSBNYXRyaXg6OnJvd1N1bXMoTmV1cm8udHJhamVjdG9yaWVzQGFzc2F5cyRSTkFAY291bnRzWyxQYWxsaWFsY2VsbHNdID4gMCkKUGFsbGlhbC5leHByZXNzZWQgPC0gbmFtZXMoeCA9IG51bS5jZWxsc1t3aGljaCh4ID0gbnVtLmNlbGxzID49IDIwMCldKQoKbnVtLmNlbGxzIDwtIE1hdHJpeDo6cm93U3VtcyhOZXVyby50cmFqZWN0b3JpZXNAYXNzYXlzJFJOQUBjb3VudHNbLENSY2VsbHNdID4gMCkKQ1IuZXhwcmVzc2VkIDwtIG5hbWVzKHggPSBudW0uY2VsbHNbd2hpY2goeCA9IG51bS5jZWxscyA+PSAyMDApXSkKCklucHV0LmdlbmVzIDwtIHJvd25hbWVzKGdibV9jZHMpW3Jvd25hbWVzKGdibV9jZHMpICVpbiUgaW50ZXJzZWN0KFBhbGxpYWwuZXhwcmVzc2VkLCBDUi5leHByZXNzZWQpXQpgYGAKCgpgYGB7ciAgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgY2FjaGU9VFJVRX0KUGFsbGlhbC5nZW5lcyA8LSBkaWZmZXJlbnRpYWxHZW5lVGVzdChnYm1fY2RzW0lucHV0LmdlbmVzLCBQYWxsaWFsY2VsbHNdLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZ1bGxNb2RlbEZvcm11bGFTdHIgPSAifnNtLm5zKFBzZXVkb3RpbWUsIGRmID0gMykiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlZHVjZWRNb2RlbEZvcm11bGFTdHIgPSAifjEiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvcmVzID0gcGFyYWxsZWw6OmRldGVjdENvcmVzKCkgLSAyKQoKI0ZpbHRlciBiYXNlZCBvbiBGRFIKUGFsbGlhbC5nZW5lcy5maWx0ZXJlZCA8LSBQYWxsaWFsLmdlbmVzICAlPiUgZmlsdGVyKHF2YWwgPCAxZS0zKQpgYGAKCmBgYHtyICBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBjYWNoZT1UUlVFfQpDUmNlbGxzLmdlbmVzIDwtIGRpZmZlcmVudGlhbEdlbmVUZXN0KGdibV9jZHNbSW5wdXQuZ2VuZXMsIENSY2VsbHNdLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZ1bGxNb2RlbEZvcm11bGFTdHIgPSAifnNtLm5zKFBzZXVkb3RpbWUsIGRmID0gMykiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHJlZHVjZWRNb2RlbEZvcm11bGFTdHIgPSAifjEiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvcmVzID0gcGFyYWxsZWw6OmRldGVjdENvcmVzKCkgLSAyKQoKI0ZpbHRlciBiYXNlZCBvbiBGRFIKQ1JjZWxscy5nZW5lcy5maWx0ZXJlZCA8LSBDUmNlbGxzLmdlbmVzICAlPiUgZmlsdGVyKHF2YWwgPCAxZS0zKQpgYGAKCmBgYHtyfQpDb21tb24uZ2VuZXMgPC0gaW50ZXJzZWN0KFBhbGxpYWwuZ2VuZXMuZmlsdGVyZWQkZ2VuZV9zaG9ydF9uYW1lLCBDUmNlbGxzLmdlbmVzLmZpbHRlcmVkJGdlbmVfc2hvcnRfbmFtZSkKYGBgCgpgYGB7ciwgY2FjaGU9VFJVRX0KIyBTbW9vdGggZ2VuZXMgZXhwcmVzc2lvbiBhbG9uZyB0aGUgdHdvIHRyYWplY3RvcmllcwpuUG9pbnRzIDwtIDMwMAoKbmV3X2RhdGEgPSBsaXN0KCkKZm9yIChMaW5lYWdlIGluIHVuaXF1ZShwRGF0YShnYm1fY2RzKSRMaW5lYWdlKSl7CiAgbmV3X2RhdGFbW2xlbmd0aChuZXdfZGF0YSkgKyAxXV0gPSBkYXRhLmZyYW1lKFBzZXVkb3RpbWUgPSBzZXEobWluKHBEYXRhKGdibV9jZHMpJFBzZXVkb3RpbWUpLCBtYXgocERhdGEoZ2JtX2NkcykkUHNldWRvdGltZSksIGxlbmd0aC5vdXQgPSBuUG9pbnRzKSwgTGluZWFnZT1MaW5lYWdlKQp9CgpuZXdfZGF0YSA9IGRvLmNhbGwocmJpbmQsIG5ld19kYXRhKQoKIyBTbW9vdGggZ2VuZSBleHByZXNzaW9uCmN1cnZlX21hdHJpeCA8LSBnZW5TbW9vdGhDdXJ2ZXMoZ2JtX2Nkc1thcy5jaGFyYWN0ZXIoQ29tbW9uLmdlbmVzKSxdLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRyZW5kX2Zvcm11bGEgPSAifnNtLm5zKFBzZXVkb3RpbWUsIGRmID0gMykqTGluZWFnZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVsYXRpdmVfZXhwciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmV3X2RhdGEgPSBuZXdfZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb3Jlcz0gcGFyYWxsZWw6OmRldGVjdENvcmVzKCkgLSAyKQpgYGAKCmBgYHtyfQojIEV4dHJhY3QgZ2VuZXMgd2l0aCBwZXJzb24ncyBjb3IgPiAwLjYgYmV0d2VlbiB0aGUgMiB0cmFqZWN0b3JpZXMKClBhbGxpYWwuc21vb3RoZWQgPC0gc2NhbGUodChjdXJ2ZV9tYXRyaXhbLGMoMTozMDApXSkpICAjUGFsbGlhbCBwb2ludHMKQ1Iuc21vb3RoZWQgPC0gc2NhbGUodChjdXJ2ZV9tYXRyaXhbLGMoMzAxOjYwMCldKSkgI0NSIHBvaW50cwoKbWF0IDwtIGNvcihQYWxsaWFsLnNtb290aGVkLCBDUi5zbW9vdGhlZCwgbWV0aG9kID0gInBlYXJzb24iKQoKR2VuZS5Db3IgPC0gZGlhZyhtYXQpCmhpc3QoR2VuZS5Db3IsIGJyZWFrcyA9IDEwMCkKYWJsaW5lKHY9MC44LGNvbD1jKCJibHVlIikpCmBgYApgYGB7cn0KUGFuTmV1cm8uZ2VuZXMgPC0gbmFtZXMoR2VuZS5Db3JbR2VuZS5Db3IgPiAwLjhdKQpgYGAKCmBgYHtyfQojIE9yZGVyIHJvd3MgdXNpbmcgc2VyaWF0aW9uCmRzdCA8LSBhcy5kaXN0KCgxLWNvcihzY2FsZSh0KGN1cnZlX21hdHJpeFtQYW5OZXVyby5nZW5lcyxjKDYwMDozMDEpXSkpLCBtZXRob2QgPSAicGVhcnNvbiIpKSkKcm93LnNlciA8LSBzZXJpYXRlKGRzdCwgbWV0aG9kID0iTURTX2FuZ2xlIikgI01EU19hbmdsZQpnZW5lLm9yZGVyIDwtIFBhbk5ldXJvLmdlbmVzW2dldF9vcmRlcihyb3cuc2VyKV0KCmFubm8uY29sb3JzIDwtIGxpc3QobGluZWFnZSA9IGMoUGFsbGlhbD0iIzAyNmM5YSIsQ1I9IiNjYzM5MWIiKSkKCgpwaGVhdG1hcDo6cGhlYXRtYXAoY3VydmVfbWF0cml4W3JldihnZW5lLm9yZGVyKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKDE6MzAwLCAzMDE6NjAwKV0sICNDUgogICAgICAgICAgICAgICAgICAgc2NhbGUgPSAicm93IiwKICAgICAgICAgICAgICAgICAgIGNsdXN0ZXJfcm93cyA9IEYsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX2NvbHMgPSBGLAogICAgICAgICAgICAgICAgICAgYW5ub3RhdGlvbl9jb2wgPSBkYXRhLmZyYW1lKGxpbmVhZ2UgPSByZXAoYygiUGFsbGlhbCIsIkNSIiksIGVhY2g9MzAwKSksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbG9ycyA9IGFubm8uY29sb3JzLAogICAgICAgICAgICAgICAgICAgc2hvd19jb2xuYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBzaG93X3Jvd25hbWVzID0gVCwKICAgICAgICAgICAgICAgICAgIGZvbnRzaXplX3JvdyA9IDIsCiAgICAgICAgICAgICAgICAgICBjb2xvciA9ICB2aXJpZGlzOjp2aXJpZGlzKDEwKSwKICAgICAgICAgICAgICAgICAgIGJyZWFrcyA9IHNlcSgtMi41LDIuNSwgbGVuZ3RoLm91dCA9IDEwKSwKICAgICAgICAgICAgICAgICAgIG1haW4gPSAiIikKYGBgCgpgYGB7cn0Kcm0obGlzdCA9IGxzKClbIWxzKCkgJWluJSBjKCJOZXVyby50cmFqZWN0b3JpZXMiLCAiZ2JtX2NkcyIsICJHZW5lLlRyZW5kIiwgIlBsb3QuR2VuZXMudHJlbmQiKV0pCmdjKCkKYGBgCgojIyBUZXN0IGVhY2ggZ2VuZSB0cmVuZCBvdmVyIHBzZXVkb3RpbWUgc2NvcmUKCiMjIyBGaW5kIGdlbmVzIERFIGFsb25nIHBzZXVkb21hdHVyYXRpb24gYXhpcwoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgY2FjaGU9VFJVRX0KcHNldWRvLm1hdHVyYXRpb24uZGlmZiA8LSBkaWZmZXJlbnRpYWxHZW5lVGVzdChnYm1fY2RzW2ZEYXRhKGdibV9jZHMpJG51bV9jZWxsc19leHByZXNzZWQgPiA4MCxdLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZ1bGxNb2RlbEZvcm11bGFTdHIgPSAifnNtLm5zKFBzZXVkb3RpbWUsIGRmID0gMykqTGluZWFnZSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVkdWNlZE1vZGVsRm9ybXVsYVN0ciA9ICJ+c20ubnMoUHNldWRvdGltZSwgZGYgPSAzKSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29yZXMgPSBwYXJhbGxlbDo6ZGV0ZWN0Q29yZXMoKSAtIDIpCgpgYGAKCmBgYHtyfQojIEZpbHRlciBnZW5lcyBiYXNlZCBvbiBGRFIKcHNldWRvLm1hdHVyYXRpb24uZGlmZi5maWx0ZXJlZCA8LSBwc2V1ZG8ubWF0dXJhdGlvbi5kaWZmICU+JSBmaWx0ZXIocXZhbCA8IDFlLTQwKQpgYGAKCiMjIERpcmVjdGlvbiBvZiB0aGUgREVHIGJ5IGNhbGN1bGF0aW5nIHRoZSBhcmVhIGJldHdlZW4gY3VydmVzIChBQkMpCgojIyMgU21vb3RoIGNvbW11biBnZW5lcyBhbG9uZyB0aGUgdHdvIHRyYWplY3RvcmllcwoKYGBge3IgU21vb3RoIGdlbmUgZXhwcmVzc2lvbiwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgY2FjaGU9VFJVRX0KIyBDcmVhdGUgYSBuZXcgcHNldWRvLURWIHZlY3RvciBvZiAyMDAgcG9pbnRzCm5Qb2ludHMgPC0gMzAwCgpuZXdfZGF0YSA9IGxpc3QoKQpmb3IgKExpbmVhZ2UgaW4gdW5pcXVlKHBEYXRhKGdibV9jZHMpJExpbmVhZ2UpKXsKICBuZXdfZGF0YVtbbGVuZ3RoKG5ld19kYXRhKSArIDFdXSA9IGRhdGEuZnJhbWUoUHNldWRvdGltZSA9IHNlcShtaW4ocERhdGEoZ2JtX2NkcykkUHNldWRvdGltZSksIG1heChwRGF0YShnYm1fY2RzKSRQc2V1ZG90aW1lKSwgbGVuZ3RoLm91dCA9IG5Qb2ludHMpLCBMaW5lYWdlPUxpbmVhZ2UpCn0KCm5ld19kYXRhID0gZG8uY2FsbChyYmluZCwgbmV3X2RhdGEpCgojIFNtb290aCBnZW5lIGV4cHJlc3Npb24KRGlmZi5jdXJ2ZV9tYXRyaXggPC0gZ2VuU21vb3RoQ3VydmVzKGdibV9jZHNbYXMuY2hhcmFjdGVyKHBzZXVkby5tYXR1cmF0aW9uLmRpZmYuZmlsdGVyZWQkZ2VuZV9zaG9ydF9uYW1lKSxdLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRyZW5kX2Zvcm11bGEgPSAifnNtLm5zKFBzZXVkb3RpbWUsIGRmID0gMykqTGluZWFnZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVsYXRpdmVfZXhwciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbmV3X2RhdGEgPSBuZXdfZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb3Jlcz0gcGFyYWxsZWw6OmRldGVjdENvcmVzKCkgLSAyKQpgYGAKCiMjIyBDb21wdXRlIHRoZSBBQkMgZm9yIGVhY2ggZ2VuZQoKYGBge3IgQ29tcHV0ZSB0aGUgQUJDfQojIEV4dHJhY3QgbWF0cml4IGNvbnRhaW5pbmcgc21vb3RoZWQgY3VydmVzIGZvciBlYWNoIGxpbmVhZ2VzClBhbF9jdXJ2ZV9tYXRyaXggPC0gRGlmZi5jdXJ2ZV9tYXRyaXhbLCAxOm5Qb2ludHNdICNQYWxsaWFsIHBvaW50cwpDUl9jdXJ2ZV9tYXRyaXggPC0gRGlmZi5jdXJ2ZV9tYXRyaXhbLCAoblBvaW50cyArIDEpOigyICogblBvaW50cyldICNDUiBwb2ludHMKCiMgRGlyZWN0aW9uIG9mIHRoZSBjb21wYXJpc29uIDogcG9zdGl2ZSBBQkNzIDw9PiBVcHJlZ3VsYXRlZCBpbiBDUiBsaW5lYWdlCkFCQ3NfcmVzIDwtIENSX2N1cnZlX21hdHJpeCAtIFBhbF9jdXJ2ZV9tYXRyaXgKCiMgQXZlcmFnZSBsb2dGQyBiZXR3ZWVuIHRoZSAyIGN1cnZlcwpJTFJfcmVzIDwtIGxvZzIoQ1JfY3VydmVfbWF0cml4LyAoUGFsX2N1cnZlX21hdHJpeCArIDAuMSkpIAogIApBQkNzX3JlcyA8LSBhcHBseShBQkNzX3JlcywgMSwgZnVuY3Rpb24oeCwgblBvaW50cykgewogICAgICAgICAgICAgICAgICBhdmdfZGVsdGFfeCA8LSAoeFsxOihuUG9pbnRzIC0gMSldICsgeFsyOihuUG9pbnRzKV0pLzIKICAgICAgICAgICAgICAgICAgc3RlcCA8LSAoMTAwLyhuUG9pbnRzIC0gMSkpCiAgICAgICAgICAgICAgICAgIHJlcyA8LSByb3VuZChzdW0oYXZnX2RlbHRhX3ggKiBzdGVwKSwgMykKICAgICAgICAgICAgICAgICAgcmV0dXJuKHJlcyl9LAogICAgICAgICAgICAgICAgICBuUG9pbnRzID0gblBvaW50cykgIyBDb21wdXRlIHRoZSBhcmVhIGJlbG93IHRoZSBjdXJ2ZQogIApBQkNzX3JlcyA8LSBjYmluZChBQkNzX3JlcywgSUxSX3Jlc1ssbmNvbChJTFJfcmVzKV0pCmNvbG5hbWVzKEFCQ3NfcmVzKTwtIGMoIkFCQ3MiLCAiRW5kcG9pbnRfSUxSIikKCiMgSW1wb3J0IEFCQyB2YWx1ZXMgaW50byB0aGUgREUgdGVzdCByZXN1bHRzIHRhYmxlCnBzZXVkby5tYXR1cmF0aW9uLmRpZmYuZmlsdGVyZWQgPC0gY2JpbmQocHNldWRvLm1hdHVyYXRpb24uZGlmZi5maWx0ZXJlZFssMTo0XSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBBQkNzX3JlcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwc2V1ZG8ubWF0dXJhdGlvbi5kaWZmLmZpbHRlcmVkWyw1OjZdKQpgYGAKCiMjIENhamFsLVJldHppdXMgY2VsbHMgc3BlY2lmaWMgdHJhamVjdG9yeSBhbmFseXNpcwoKYGBge3J9CiMgRXh0cmFjdCBDYWphbC1SZXR6aXVzIGV4cHJlc3NlZCBnZW5lcwpDUi5yZXMgPC0gYXMuZGF0YS5mcmFtZShwc2V1ZG8ubWF0dXJhdGlvbi5kaWZmLmZpbHRlcmVkW3BzZXVkby5tYXR1cmF0aW9uLmRpZmYuZmlsdGVyZWQkQUJDcyA+IDAsXSkKQ1IuZ2VuZXMgPC0gcm93Lm5hbWVzKENSLnJlcykKCkNSX2N1cnZlX21hdHJpeCA8LSBDUl9jdXJ2ZV9tYXRyaXhbQ1IuZ2VuZXMsIF0KYGBgCgojIyMgR2VuZSBleHByZXNzaW9uIHByb2ZpbGVzIGFsb25nIHRoZSB0cmFqZWN0b3J5CgpgYGB7cn0KUHNldWRvdGltZS5nZW5lcy5jbHVzdGVycyA8LSBjbHVzdGVyOjpwYW0oYXMuZGlzdCgoMSAtIGNvcihNYXRyaXg6OnQoQ1JfY3VydmVfbWF0cml4KSxtZXRob2QgPSAicGVhcnNvbiIpKSksIGs9IDUpCgpDUi5HZW5lLmR5bmFtaXF1ZSA8LSBkYXRhLmZyYW1lKEdlbmU9IG5hbWVzKFBzZXVkb3RpbWUuZ2VuZXMuY2x1c3RlcnMkY2x1c3RlcmluZyksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFdhdmVzPSBQc2V1ZG90aW1lLmdlbmVzLmNsdXN0ZXJzJGNsdXN0ZXJpbmcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEdlbmUuQ2x1c3RlcnMgPSBQc2V1ZG90aW1lLmdlbmVzLmNsdXN0ZXJzJGNsdXN0ZXJpbmcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHEudmFsID0gQ1IucmVzJHF2YWwsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEFCQ3M9IENSLnJlcyRBQkNzCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICkgJT4lIGFycmFuZ2UoR2VuZS5DbHVzdGVycykKCnJvdy5uYW1lcyhDUi5HZW5lLmR5bmFtaXF1ZSkgPC0gQ1IuR2VuZS5keW5hbWlxdWUkR2VuZQpDUi5HZW5lLmR5bmFtaXF1ZSRHZW5lLkNsdXN0ZXJzIDwtIHBhc3RlMCgiQ2x1c3QuIiwgQ1IuR2VuZS5keW5hbWlxdWUkR2VuZS5DbHVzdGVycykKCndyaXRlLnRhYmxlKENSLkdlbmUuZHluYW1pcXVlLCAiQ1JfZHluYW1pY19nZW5lcy5jc3YiLCBzZXAgPSAiOyIsIHF1b3RlID0gRiwgcm93Lm5hbWVzID0gRikKYGBgCgpgYGB7ciBDUiBnZW5lIGhlYXRtYXAsIGZpZy5kaW09Yyg5LCA1KX0KIyBPcmRlciB0aGUgcm93cyB1c2luZyBzZXJpYXRpb24KZHN0IDwtIGFzLmRpc3QoKDEtY29yKHNjYWxlKHQoQ1JfY3VydmVfbWF0cml4KSksIG1ldGhvZCA9ICJwZWFyc29uIikpKQpyb3cuc2VyIDwtIHNlcmlhdGlvbjo6c2VyaWF0ZShkc3QsIG1ldGhvZCA9IlIyRSIpICMiUjJFIiAjVFNQICMiR1ciICJHV193YXJkIgpnZW5lLm9yZGVyIDwtIHJvd25hbWVzKENSX2N1cnZlX21hdHJpeFtnZXRfb3JkZXIocm93LnNlciksXSkKCiMgU2V0IGFubm90YXRpb24gY29sb3JzCnBhbCA8LSB3ZXNfcGFsZXR0ZSgiRGFyamVlbGluZzEiKQphbm5vLmNvbG9ycyA8LSBsaXN0KGxpbmVhZ2UgPSBjKFBhbGxpYWxfbmV1cm9ucz0iIzAyNmM5YSIsIENhamFsX1JldHppdXM9IiNjYzM5MWIiKSwKICAgICAgICAgICAgICAgICAgICBHZW5lLkNsdXN0ZXJzID0gYyhDbHVzdC4xID1wYWxbMV0gLCBDbHVzdC4yPXBhbFsyXSwgQ2x1c3QuMz1wYWxbM10sIENsdXN0LjQ9cGFsWzRdLCBDbHVzdC41PXBhbFs1XSkpCgoKcGhlYXRtYXA6OnBoZWF0bWFwKERpZmYuY3VydmVfbWF0cml4W2dlbmUub3JkZXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYygzMDA6MSwjUGFsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMzAxOjYwMCldLCAjQ1IKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgIGFubm90YXRpb25fcm93ID0gQ1IuR2VuZS5keW5hbWlxdWUgJT4lIGRwbHlyOjpzZWxlY3QoR2VuZS5DbHVzdGVycyksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbCA9IGRhdGEuZnJhbWUobGluZWFnZSA9IHJlcChjKCJQYWxsaWFsX25ldXJvbnMiLCJDYWphbF9SZXR6aXVzIiksIGVhY2g9MzAwKSksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbG9ycyA9IGFubm8uY29sb3JzLAogICAgICAgICAgICAgICAgICAgc2hvd19jb2xuYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBzaG93X3Jvd25hbWVzID0gRiwKICAgICAgICAgICAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgICAgICAgICAgICBjb2xvciA9ICB2aXJpZGlzOjp2aXJpZGlzKDkpLAogICAgICAgICAgICAgICAgICAgYnJlYWtzID0gc2VxKC0yLjUsMi41LCBsZW5ndGgub3V0ID0gOSksCiAgICAgICAgICAgICAgICAgICBtYWluID0gIiIpCmBgYApXZSBtYW51YWxseSBjb3JyZWN0IHRoZSByZW9yZGVyaW5nIHNvIGdlbmVzIGFyZSBhbGlnbmVkIGZyb20gdG9wIGxlZnQgdG8gYm90dG9tIHJpZ3RoCgpgYGB7ciBmaWcuZGltPWMoOSwgNSl9CmdlbmUub3JkZXIgPC0gZ2VuZS5vcmRlcltjKDI0MzoxLDYyMjoyNDQpXQoKcGhlYXRtYXA6OnBoZWF0bWFwKERpZmYuY3VydmVfbWF0cml4W2dlbmUub3JkZXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYygzMDA6MSwjUGFsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMzAxOjYwMCldLCAjQ1IKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgIGFubm90YXRpb25fcm93ID0gQ1IuR2VuZS5keW5hbWlxdWUgJT4lIGRwbHlyOjpzZWxlY3QoR2VuZS5DbHVzdGVycyksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbCA9IGRhdGEuZnJhbWUobGluZWFnZSA9IHJlcChjKCJQYWxsaWFsX25ldXJvbnMiLCJDYWphbF9SZXR6aXVzIiksIGVhY2g9MzAwKSksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbG9ycyA9IGFubm8uY29sb3JzLAogICAgICAgICAgICAgICAgICAgc2hvd19jb2xuYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBzaG93X3Jvd25hbWVzID0gRiwKICAgICAgICAgICAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgICAgICAgICAgICBjb2xvciA9ICB2aXJpZGlzOjp2aXJpZGlzKDkpLAogICAgICAgICAgICAgICAgICAgYnJlYWtzID0gc2VxKC0yLjUsMi41LCBsZW5ndGgub3V0ID0gOSksCiAgICAgICAgICAgICAgICAgICBtYWluID0gIiIpCmBgYAoKCmBgYHtyIGZpZy5kaW09Yyg5LCA1KX0KYW5uby5jb2xvcnMgPC0gbGlzdChDZWxsLnN0YXRlID0gYyhDeWNsaW5nX1JHPSIjMDQ2YzlhIiwgRGlmZmVyZW50aWF0aW5nX2NlbGxzPSIjZWJjYjJlIiksCiAgICAgICAgICAgICAgICAgICAgR2VuZS5DbHVzdGVycyA9IGMoQ2x1c3QuMSA9cGFsWzFdICwgQ2x1c3QuMj1wYWxbMl0sIENsdXN0LjM9cGFsWzNdLCBDbHVzdC40PXBhbFs0XSwgQ2x1c3QuNT1wYWxbNV0pKQoKY29sLmFubm8gPC0gZGF0YS5mcmFtZShDZWxsLnN0YXRlID0gcmVwKGMoIkN5Y2xpbmdfUkciLCJEaWZmZXJlbnRpYXRpbmdfY2VsbHMiKSwgYygxMDAsMjAwKSkpCnJvd25hbWVzKGNvbC5hbm5vKSA8LSAzMDE6NjAwCgpwaGVhdG1hcDo6cGhlYXRtYXAoQ1JfY3VydmVfbWF0cml4W2dlbmUub3JkZXIsXSwKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgIGFubm90YXRpb25fcm93ID0gQ1IuR2VuZS5keW5hbWlxdWUgJT4lIGRwbHlyOjpzZWxlY3QoR2VuZS5DbHVzdGVycyksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbCA9IGNvbC5hbm5vLAogICAgICAgICAgICAgICAgICAgYW5ub3RhdGlvbl9jb2xvcnMgPSBhbm5vLmNvbG9ycywKICAgICAgICAgICAgICAgICAgIGdhcHNfY29sID0gMTAwLAogICAgICAgICAgICAgICAgICAgc2hvd19jb2xuYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBzaG93X3Jvd25hbWVzID0gRiwKICAgICAgICAgICAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgICAgICAgICAgICBjb2xvciA9ICB2aXJpZGlzOjp2aXJpZGlzKDkpLAogICAgICAgICAgICAgICAgICAgYnJlYWtzID0gc2VxKC0yLjUsMi41LCBsZW5ndGgub3V0ID0gOSksCiAgICAgICAgICAgICAgICAgICBtYWluID0gIiIpCgpgYGAKCmBgYHtyfQpkaWZmLnN0YXRlIDwtIE5ldXJvLnRyYWplY3Rvcmllc0BtZXRhLmRhdGEgJT4lCiAgICAgICAgICAgICAgZmlsdGVyKExpbmVhZ2UgPT0gICJDYWphbC1SZXR6aXVzX25ldXJvbnMiKSAlPiUKICAgICAgICAgICAgICBzZWxlY3QoIkFQX3NpZ25hdHVyZTEiLCAiQlBfc2lnbmF0dXJlMSIsICJFTl9zaWduYXR1cmUxIiwgIkxOX3NpZ25hdHVyZTEiLCAiUHNldWRvdGltZSIpCgpBUC5sb2VzcyA8LSBsb2VzcyhBUF9zaWduYXR1cmUxIH4gUHNldWRvdGltZSwgZGlmZi5zdGF0ZSkKQVAuc21vb3RoIDwtIHByZWRpY3QoQVAubG9lc3MsCiAgICAgICAgICAgICAgICAgICAgIHNlcSgwLjAxLDEuNSwgbGVuZ3RoLm91dD0gMzAwKSkKCkJQLmxvZXNzIDwtIGxvZXNzKEJQX3NpZ25hdHVyZTEgfiBQc2V1ZG90aW1lLCBkaWZmLnN0YXRlKQpCUC5zbW9vdGggPC0gcHJlZGljdChCUC5sb2VzcywKICAgICAgICAgICAgICAgICAgICAgc2VxKDAuMDEsMS41LCBsZW5ndGgub3V0PSAzMDApKQoKRU4ubG9lc3MgPC0gbG9lc3MoRU5fc2lnbmF0dXJlMSB+IFBzZXVkb3RpbWUsIGRpZmYuc3RhdGUpCkVOLnNtb290aCA8LSBwcmVkaWN0KEVOLmxvZXNzLAogICAgICAgICAgICAgICAgICAgICBzZXEoMC4wMSwxLjUsIGxlbmd0aC5vdXQ9IDMwMCkpCgpMTi5sb2VzcyA8LSBsb2VzcyhMTl9zaWduYXR1cmUxIH4gUHNldWRvdGltZSwgZGlmZi5zdGF0ZSkKTE4uc21vb3RoIDwtIHByZWRpY3QoTE4ubG9lc3MsCiAgICAgICAgICAgICAgICAgICAgIHNlcSgwLjAxLDEuNSwgbGVuZ3RoLm91dD0gMzAwKSkKClNtb290aGVkLnN0YXRlcyA8LSBjYmluZChBUC5zbW9vdGgsIEJQLnNtb290aCwgRU4uc21vb3RoLCBMTi5zbW9vdGgpCmBgYAoKYGBge3IsIGZpZy5zaG93PSJoaWRlIn0KaGVhdG1hcC5zdGF0ZXMgPC0gcGhlYXRtYXA6OnBoZWF0bWFwKGFzLmRhdGEuZnJhbWUodChTbW9vdGhlZC5zdGF0ZXMpKSwKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgIGdhcHNfY29sID0gMTAwLAogICAgICAgICAgICAgICAgICAgZ2Fwc19yb3cgPSBjKDEsMiwzKSwKICAgICAgICAgICAgICAgICAgIHNob3dfY29sbmFtZXMgPSBGLAogICAgICAgICAgICAgICAgICAgc2hvd19yb3duYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBmb250c2l6ZV9yb3cgPSA4LAogICAgICAgICAgICAgICAgICAgY29sb3IgPSAgcmV2KGNvbG9yUmFtcFBhbGV0dGUoYnJld2VyLnBhbChuPSA4LCBuYW1lID0gIlJkQnUiKSkoMTAwKSksCiAgICAgICAgICAgICAgICAgICBicmVha3MgPSBzZXEoLTEsMSwgbGVuZ3RoLm91dCA9IDEwMCksCiAgICAgICAgICAgICAgICAgICBtYWluID0gIiIpCgpoZWF0bWFwLmdlbmUgPC0gcGhlYXRtYXA6OnBoZWF0bWFwKENSX2N1cnZlX21hdHJpeFtnZW5lLm9yZGVyLF0sCiAgICAgICAgICAgICAgICAgICBzY2FsZSA9ICJyb3ciLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9yb3dzID0gRiwKICAgICAgICAgICAgICAgICAgIGNsdXN0ZXJfY29scyA9IEYsCiAgICAgICAgICAgICAgICAgICBnYXBzX2NvbCA9IDEwMCwKICAgICAgICAgICAgICAgICAgIHNob3dfY29sbmFtZXMgPSBGLAogICAgICAgICAgICAgICAgICAgc2hvd19yb3duYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBmb250c2l6ZV9yb3cgPSA4LAogICAgICAgICAgICAgICAgICAgY29sb3IgPSAgdmlyaWRpczo6dmlyaWRpcyg5KSwKICAgICAgICAgICAgICAgICAgIGJyZWFrcyA9IHNlcSgtMi41LDIuNSwgbGVuZ3RoLm91dCA9IDkpLAogICAgICAgICAgICAgICAgICAgbWFpbiA9ICIiKQpgYGAKCgpgYGB7cn0KY293cGxvdDo6cGxvdF9ncmlkKGhlYXRtYXAuc3RhdGVzJGd0YWJsZSwgaGVhdG1hcC5nZW5lJGd0YWJsZSwKICAgICAgICAgICAgICAgICAgIG5jb2wgPSAxLAogICAgICAgICAgICAgICAgICAgYWxpZ24gPSAidiIsCiAgICAgICAgICAgICAgICAgICByZWxfaGVpZ2h0cyA9IGMoMSwzKSwKICAgICAgICAgICAgICAgICAgIGdyZWVkeSA9IFQpCmBgYAoKIyMjIEdlbmUgY2x1c3RlciB0cmVuZAoKYGBge3IgZmlnLmRpbT1jKDksNiksIGNhY2hlPVRSVUV9CnNvdXJjZSgiLi4vRnVuY3Rpb25zL2Z1bmN0aW9uc19HZW5lQ2x1c3RlclRyZW5kLlIiKQoKUGxvdC5jbHVzdC50cmVuZHMoTmV1cm8udHJhamVjdG9yaWVzLAogICAgICAgICAgICAgICAgICAgTGluZWFnZSA9ICJDYWphbC1SZXR6aXVzX25ldXJvbnMiLAogICAgICAgICAgICAgICAgICAgV2hpY2guY2x1c3RlciA9IDE6NSwKICAgICAgICAgICAgICAgICAgIGNsdXN0Lmxpc3QgPSBQc2V1ZG90aW1lLmdlbmVzLmNsdXN0ZXJzJGNsdXN0ZXJpbmcsCiAgICAgICAgICAgICAgICAgICBTbW9vdGgubWV0aG9kID0gImdhbSIpCmBgYAoKIyMjIEdPIHRlcm0gZW5yaWNobWVudCBpbiBnZW5lIGNsdXN0ZXJzIHVzaW5nIGdwcm9maWxlcjIKCmBgYHtyfQpDUi5nb3N0cmVzIDwtIGdvc3QocXVlcnkgPSBsaXN0KCJDbHVzdC4xIiA9IENSLkdlbmUuZHluYW1pcXVlICU+JSBmaWx0ZXIoR2VuZS5DbHVzdGVycyA9PSAiQ2x1c3QuMSIpICU+JSBwdWxsKEdlbmUpICU+JSBhcy5jaGFyYWN0ZXIoKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2x1c3QuMiIgPSBDUi5HZW5lLmR5bmFtaXF1ZSAlPiUgZmlsdGVyKEdlbmUuQ2x1c3RlcnMgPT0gIkNsdXN0LjIiKSAlPiUgcHVsbChHZW5lKSAlPiUgYXMuY2hhcmFjdGVyKCksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkNsdXN0LjMiID0gQ1IuR2VuZS5keW5hbWlxdWUgJT4lIGZpbHRlcihHZW5lLkNsdXN0ZXJzID09ICJDbHVzdC4zIikgJT4lIHB1bGwoR2VuZSkgJT4lIGFzLmNoYXJhY3RlcigpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJDbHVzdC40IiA9IENSLkdlbmUuZHluYW1pcXVlICU+JSBmaWx0ZXIoR2VuZS5DbHVzdGVycyA9PSAiQ2x1c3QuNCIpICU+JSBwdWxsKEdlbmUpICU+JSBhcy5jaGFyYWN0ZXIoKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2x1c3QuNSIgPSBDUi5HZW5lLmR5bmFtaXF1ZSAlPiUgZmlsdGVyKEdlbmUuQ2x1c3RlcnMgPT0gIkNsdXN0LjUiKSAlPiUgcHVsbChHZW5lKSAlPiUgYXMuY2hhcmFjdGVyKCkpLAogICAgICAgICAgICAgICAgb3JnYW5pc20gPSAibW11c2N1bHVzIiwgb3JkZXJlZF9xdWVyeSA9IEYsIAogICAgICAgICAgICAgICAgbXVsdGlfcXVlcnkgPSBGLCBzaWduaWZpY2FudCA9IFQsIGV4Y2x1ZGVfaWVhID0gVCwgCiAgICAgICAgICAgICAgICBtZWFzdXJlX3VuZGVycmVwcmVzZW50YXRpb24gPSBGLCBldmNvZGVzID0gVCwgCiAgICAgICAgICAgICAgICB1c2VyX3RocmVzaG9sZCA9IDAuMDUsIGNvcnJlY3Rpb25fbWV0aG9kID0gImZkciIsIAogICAgICAgICAgICAgICAgZG9tYWluX3Njb3BlID0gImFubm90YXRlZCIsIGN1c3RvbV9iZyA9IE5VTEwsIAogICAgICAgICAgICAgICAgbnVtZXJpY19ucyA9ICIiLCBzb3VyY2VzID0gYygiR086TUYiLCAiR086QlAiKSwgYXNfc2hvcnRfbGluayA9IEYpCgp3cml0ZS50YWJsZShhcHBseShDUi5nb3N0cmVzJHJlc3VsdCwyLGFzLmNoYXJhY3RlciksCiAgICAgICAgICAgICJDUl9HT19yZXMtYnktd2F2ZXMuY3N2Iiwgc2VwID0gIjsiLCBxdW90ZSA9IEYsIHJvdy5uYW1lcyA9IEYpCmBgYAoKYGBge3J9CkROQV9kYW1hZ2VfR090ZXJtIDwtIENSLmdvc3RyZXMkcmVzdWx0W0NSLmdvc3RyZXMkcmVzdWx0JHRlcm1faWQgJWluJSBjKCJHTzowMDA4NjMwIiwgIkdPOjAwMzAzMzAiLCAiR086MDAzMTU3MSIsICJHTzowMDA2OTc0IiwgIkdPOjAwMDY5NzciLCJHTzowMDMzNTU0IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkdPOjAwNDQ3NzMiLCAiR086MDA0Mjc3MSIsICJHTzowMDQyNzcwIiwgIkdPOjIwMDEwMjEiLCAiR086MTkwMjIyOSIpLF0KCkROQV9kYW1hZ2VfR090ZXJtWyxjKDksMSwyLDMsNSw2LDcsMTEpXQpgYGAKCiMjIyBNdWx0aWNpbGlhdGlvbiBhbmQgRE5BIGRhbWFnZSBzY29yZQoKYGBge3J9CkhlbS5kYXRhIDwtIHJlYWRSRFMoIi4uL1FDLmZpbHRlcmVkLmNsdXN0ZXJlZC5jZWxscy5SRFMiKQpgYGAKCldlIHRvb2sgdGhlIDI4IGdlbmVzIGZyb20gKExld2lzICYgU3RyYWNrZXIgMjAyMSlbaHR0cHM6Ly9kb2kub3JnLzEwLjEwMTYvai5zZW1jZGIuMjAyMC4wNC4wMDddCgpgYGB7cn0KTUNDLmdlbmVzIDwtIGxpc3QoYygiVHJwNzMiLCAiR21uYyIsICJGb3hqMSIsICJNeWIiLCAiQ2NubyIsICJDY2RjNjciLCAiTWNpZGFzIiwgIkUyZjQiLCAiRTJmNSIsICJBaHIiLCAiVHJyYXAiLCAiQ2RjMjBiIiwgIkNjZGM3OCIsICJSZngyIiwgIlJmeDMiLCAiRm94bjQiLCAiRmFuazEiLCAiSmF6ZjEiLCAiQ2NuYTEiLCAiTmVrMTAiLCAiUGxrNCIsICJDZXA2MyIsICJDZXAxNTIiLCAiU2FzczYiLCAiUGNudCIsICJQY20xIiwgIkNldG4yIiwgIlRmZHAxIikpCgpIZW0uZGF0YSA8LSBBZGRNb2R1bGVTY29yZShIZW0uZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmVhdHVyZXMgPSBNQ0MuZ2VuZXMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIG5hbWUgPSAiTUNDX3Njb3JlIikKCnAxIDwtIEZlYXR1cmVQbG90KG9iamVjdCA9IEhlbS5kYXRhLAogICAgICAgICAgICBmZWF0dXJlcyA9IGMoIk1DQ19zY29yZTEiKSwKICAgICAgICAgICAgcHQuc2l6ZSA9IDAuNSwKICAgICAgICAgICAgY29scyA9IHJldihicmV3ZXIucGFsKDEwLCJTcGVjdHJhbCIpKSwKICAgICAgICAgICAgcmVkdWN0aW9uID0gInNwcmluZyIsCiAgICAgICAgICAgIG9yZGVyID0gVCkgJiBOb0F4ZXMoKQpgYGAKCmBgYHtyfQpETkFfZGFtYWdlX2dlbmVzIDwtIEROQV9kYW1hZ2VfR090ZXJtICU+JQogICAgICAgICAgICAgICAgICAgIGZpbHRlcihxdWVyeSAlaW4lIGMoIkNsdXN0LjIiLCAiQ2x1c3QuMyIsICJDbHVzdC40IikpICU+JQogICAgICAgICAgICAgICAgICAgIGZpbHRlcih0ZXJtX2lkID09ICJHTzowMDMzNTU0IikgJT4lCiAgICAgICAgICAgICAgICAgICAgcHVsbChpbnRlcnNlY3Rpb24pICU+JSBzdHJzcGxpdCgiXFwsIikgJT4lIHVubGlzdCgpICU+JSB1bmlxdWUoKQpgYGAKCmBgYHtyfQpIZW0uZGF0YSA8LSBBZGRNb2R1bGVTY29yZShIZW0uZGF0YSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmVhdHVyZXMgPSBETkFfZGFtYWdlX2dlbmVzLAogICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lID0gImNlbGx1bGFyX3Jlc3BvbnNlX3RvX3N0cmVzc19zY29yZSIpCgpwMiA8LSBGZWF0dXJlUGxvdChvYmplY3QgPSBIZW0uZGF0YSwKICAgICAgICAgICAgZmVhdHVyZXMgPSBjKCJjZWxsdWxhcl9yZXNwb25zZV90b19zdHJlc3Nfc2NvcmUxIiksCiAgICAgICAgICAgIHB0LnNpemUgPSAwLjUsCiAgICAgICAgICAgIGNvbHMgPSByZXYoYnJld2VyLnBhbCgxMCwiU3BlY3RyYWwiKSksCiAgICAgICAgICAgIHJlZHVjdGlvbiA9ICJzcHJpbmciLAogICAgICAgICAgICBvcmRlciA9IFQpICYgTm9BeGVzKCkKYGBgCgpgYGB7cn0KcDEgKyBwMiArIHBhdGNod29yazo6cGxvdF9sYXlvdXQobmNvbCA9IDIpCmBgYAoKIyMjIEdvIHRlcm0gb24gYWxsIENSIGdlbmVzCgpgYGB7cn0KQ1IuZ29zdHJlcyA8LSBnb3N0KHF1ZXJ5ID0gYXMuY2hhcmFjdGVyKENSLkdlbmUuZHluYW1pcXVlJEdlbmUpLAogICAgICAgICAgICAgICAgb3JnYW5pc20gPSAibW11c2N1bHVzIiwgb3JkZXJlZF9xdWVyeSA9IEYsIAogICAgICAgICAgICAgICAgbXVsdGlfcXVlcnkgPSBGLCBzaWduaWZpY2FudCA9IFQsIGV4Y2x1ZGVfaWVhID0gVCwgCiAgICAgICAgICAgICAgICBtZWFzdXJlX3VuZGVycmVwcmVzZW50YXRpb24gPSBGLCBldmNvZGVzID0gVCwgCiAgICAgICAgICAgICAgICB1c2VyX3RocmVzaG9sZCA9IDAuMDUsIGNvcnJlY3Rpb25fbWV0aG9kID0gImZkciIsIAogICAgICAgICAgICAgICAgZG9tYWluX3Njb3BlID0gImFubm90YXRlZCIsIGN1c3RvbV9iZyA9IE5VTEwsIAogICAgICAgICAgICAgICAgbnVtZXJpY19ucyA9ICIiLCBzb3VyY2VzID0gYygiR086TUYiLCAiR086QlAiKSwgYXNfc2hvcnRfbGluayA9IEYpCgp3cml0ZS50YWJsZShhcHBseShDUi5nb3N0cmVzJHJlc3VsdCwyLGFzLmNoYXJhY3RlciksCiAgICAgICAgICAgICJDUl9HT19yZXMuY3N2Iiwgc2VwID0gIjsiLCBxdW90ZSA9IEYsIHJvdy5uYW1lcyA9IEYpCmBgYAoKCmBgYHtyfQpETkFfZGFtYWdlX0dPdGVybSA8LSBDUi5nb3N0cmVzJHJlc3VsdFtDUi5nb3N0cmVzJHJlc3VsdCR0ZXJtX2lkICVpbiUgYygiR086MDAwODYzMCIsICJHTzowMDMwMzMwIiwgIkdPOjAwMzE1NzEiLCAiR086MDAwNjk3NCIsICJHTzowMDA2OTc3IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkdPOjAwNDQ3NzMiLCAiR086MDA0Mjc3MSIsICJHTzowMDQyNzcwIiwgIkdPOjIwMDEwMjEiLCAiR086MTkwMjIyOSIpLF0KCkROQV9kYW1hZ2VfR090ZXJtWyxjKDEsMiwzLDUsNiw3LDExKV0KYGBgCgojIyMgSW50ZXJzZWN0aW9uIHdpdGggQ2hQIGR5bmFtaWNhbHkgZXhwcmVzc2VkIGdlbmVzCgpgYGB7cn0KQ2hQX2R5bmFtaWNfZ2VuZXMgPC0gcmVhZC50YWJsZSgiLi4vQ2hvcm9pZFBsZXh1c190cmFqZWN0b3J5L0NoUC5HZW5lLmR5bmFtaXF1ZS5jc3YiLCBzZXAgPSAiOyIsIGhlYWRlciA9IFQsIHJvdy5uYW1lcyA9IDEpCmBgYAoKCmBgYHtyfQpDUl9DaFBfY29tbW9uX2dlbmVzIDwtIENSLkdlbmUuZHluYW1pcXVlICU+JSBmaWx0ZXIoR2VuZSAlaW4lIENoUF9keW5hbWljX2dlbmVzJEdlbmUpCndyaXRlLnRhYmxlKENSX0NoUF9jb21tb25fZ2VuZXMsICJDUi1DaFBfY29tbW9uX2R5bmFtaWMuY3N2Iiwgc2VwID0gIjsiLCBxdW90ZSA9IEYsIHJvdy5uYW1lcyA9IEYpCmBgYAoKYGBge3J9CmdlbmUub3JkZXIyIDwtIGdlbmUub3JkZXJbZ2VuZS5vcmRlciAlaW4lIENSX0NoUF9jb21tb25fZ2VuZXMkR2VuZV0KCnBoZWF0bWFwOjpwaGVhdG1hcChDUl9jdXJ2ZV9tYXRyaXhbZ2VuZS5vcmRlcjIsXSwKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgICNhbm5vdGF0aW9uX3JvdyA9IENSLkdlbmUuZHluYW1pcXVlICU+JSBkcGx5cjo6c2VsZWN0KEdlbmUuQ2x1c3RlcnMpLAogICAgICAgICAgICAgICAgICAgI2Fubm90YXRpb25fY29sID0gY29sLmFubm8sCiAgICAgICAgICAgICAgICAgICAjYW5ub3RhdGlvbl9jb2xvcnMgPSBhbm5vLmNvbG9ycywKICAgICAgICAgICAgICAgICAgIGdhcHNfY29sID0gMTAwLAogICAgICAgICAgICAgICAgICAgc2hvd19jb2xuYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBzaG93X3Jvd25hbWVzID0gRiwKICAgICAgICAgICAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgICAgICAgICAgICBjb2xvciA9ICB2aXJpZGlzOjp2aXJpZGlzKDkpLAogICAgICAgICAgICAgICAgICAgYnJlYWtzID0gc2VxKC0yLjUsMi41LCBsZW5ndGgub3V0ID0gOSksCiAgICAgICAgICAgICAgICAgICBtYWluID0gIiIpCmBgYApgYGB7cn0KQ1JfQ2hQX2NvbW1vbi5nb3N0cmVzIDwtIGdvc3QocXVlcnkgPSBsaXN0KCJDbHVzdC4xIiA9IENSX0NoUF9jb21tb25fZ2VuZXMgJT4lIGZpbHRlcihHZW5lLkNsdXN0ZXJzID09ICJDbHVzdC4xIikgJT4lIHB1bGwoR2VuZSkgJT4lIGFzLmNoYXJhY3RlcigpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJDbHVzdC4yIiA9IENSLkdlbmUuZHluYW1pcXVlICU+JSBmaWx0ZXIoR2VuZS5DbHVzdGVycyA9PSAiQ2x1c3QuMiIpICU+JSBwdWxsKEdlbmUpICU+JSBhcy5jaGFyYWN0ZXIoKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2x1c3QuMyIgPSBDUi5HZW5lLmR5bmFtaXF1ZSAlPiUgZmlsdGVyKEdlbmUuQ2x1c3RlcnMgPT0gIkNsdXN0LjMiKSAlPiUgcHVsbChHZW5lKSAlPiUgYXMuY2hhcmFjdGVyKCksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkNsdXN0LjQiID0gQ1IuR2VuZS5keW5hbWlxdWUgJT4lIGZpbHRlcihHZW5lLkNsdXN0ZXJzID09ICJDbHVzdC40IikgJT4lIHB1bGwoR2VuZSkgJT4lIGFzLmNoYXJhY3RlcigpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJDbHVzdC41IiA9IENSLkdlbmUuZHluYW1pcXVlICU+JSBmaWx0ZXIoR2VuZS5DbHVzdGVycyA9PSAiQ2x1c3QuNSIpICU+JSBwdWxsKEdlbmUpICU+JSBhcy5jaGFyYWN0ZXIoKSksCiAgICAgICAgICAgICAgICBvcmdhbmlzbSA9ICJtbXVzY3VsdXMiLCBvcmRlcmVkX3F1ZXJ5ID0gRiwgCiAgICAgICAgICAgICAgICBtdWx0aV9xdWVyeSA9IEYsIHNpZ25pZmljYW50ID0gVCwgZXhjbHVkZV9pZWEgPSBULCAKICAgICAgICAgICAgICAgIG1lYXN1cmVfdW5kZXJyZXByZXNlbnRhdGlvbiA9IEYsIGV2Y29kZXMgPSBULCAKICAgICAgICAgICAgICAgIHVzZXJfdGhyZXNob2xkID0gMC4wNSwgY29ycmVjdGlvbl9tZXRob2QgPSAiZmRyIiwgCiAgICAgICAgICAgICAgICBkb21haW5fc2NvcGUgPSAiYW5ub3RhdGVkIiwgY3VzdG9tX2JnID0gTlVMTCwgCiAgICAgICAgICAgICAgICBudW1lcmljX25zID0gIiIsIHNvdXJjZXMgPSBjKCJHTzpNRiIsICJHTzpCUCIpLCBhc19zaG9ydF9saW5rID0gRikKCndyaXRlLnRhYmxlKGFwcGx5KENSX0NoUF9jb21tb24uZ29zdHJlcyRyZXN1bHQsMixhcy5jaGFyYWN0ZXIpLAogICAgICAgICAgICAiQ1JfQ2hQX2NvbW1vbl9HT19yZXMtYnktd2F2ZXMuY3N2Iiwgc2VwID0gIjsiLCBxdW90ZSA9IEYsIHJvdy5uYW1lcyA9IEYpCmBgYAoKYGBge3J9CkROQV9kYW1hZ2VfR090ZXJtIDwtIENSX0NoUF9jb21tb24uZ29zdHJlcyRyZXN1bHRbQ1JfQ2hQX2NvbW1vbi5nb3N0cmVzJHJlc3VsdCR0ZXJtX2lkICVpbiUgYygiR086MDAwODYzMCIsICJHTzowMDMwMzMwIiwgIkdPOjAwMzE1NzEiLCAiR086MDAwNjk3NCIsICJHTzowMDA2OTc3IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkdPOjAwNDQ3NzMiLCAiR086MDA0Mjc3MSIsICJHTzowMDQyNzcwIiwgIkdPOjIwMDEwMjEiLCAiR086MTkwMjIyOSIpLF0KCkROQV9kYW1hZ2VfR090ZXJtWyxjKDEsMiwzLDUsNiw3LDExKV0KYGBgCgpgYGB7cn0KQ1JfQ2hQX2NvbW1vbi5nb3N0cmVzIDwtIGdvc3QocXVlcnkgPSBhcy5jaGFyYWN0ZXIoQ1JfQ2hQX2NvbW1vbl9nZW5lcyRHZW5lKSwKICAgICAgICAgICAgICAgIG9yZ2FuaXNtID0gIm1tdXNjdWx1cyIsIG9yZGVyZWRfcXVlcnkgPSBGLCAKICAgICAgICAgICAgICAgIG11bHRpX3F1ZXJ5ID0gRiwgc2lnbmlmaWNhbnQgPSBULCBleGNsdWRlX2llYSA9IFQsIAogICAgICAgICAgICAgICAgbWVhc3VyZV91bmRlcnJlcHJlc2VudGF0aW9uID0gRiwgZXZjb2RlcyA9IFQsIAogICAgICAgICAgICAgICAgdXNlcl90aHJlc2hvbGQgPSAwLjA1LCBjb3JyZWN0aW9uX21ldGhvZCA9ICJmZHIiLCAKICAgICAgICAgICAgICAgIGRvbWFpbl9zY29wZSA9ICJhbm5vdGF0ZWQiLCBjdXN0b21fYmcgPSBOVUxMLCAKICAgICAgICAgICAgICAgIG51bWVyaWNfbnMgPSAiIiwgc291cmNlcyA9IGMoIkdPOk1GIiwgIkdPOkJQIiksIGFzX3Nob3J0X2xpbmsgPSBGKQoKd3JpdGUudGFibGUoYXBwbHkoQ1JfQ2hQX2NvbW1vbi5nb3N0cmVzJHJlc3VsdCwyLGFzLmNoYXJhY3RlciksCiAgICAgICAgICAgICJDUl9DaFBfY29tbW9uX0dPX3Jlc19hbGwuY3N2Iiwgc2VwID0gIjsiLCBxdW90ZSA9IEYsIHJvdy5uYW1lcyA9IEYpCmBgYAoKIyMjIE1lZGlhbCBDUiB0cmFuc2NyaXB0aW9uIGZhY3RvciBkeW5hbWljCgpgYGB7cn0KQ1IgPC0gTmV1cm8udHJhamVjdG9yaWVzQG1ldGEuZGF0YSAlPiUgZmlsdGVyKExpbmVhZ2UgPT0gIkNhamFsLVJldHppdXNfbmV1cm9ucyIpICU+JSBzZWxlY3QoQmFyY29kZXMsUHNldWRvdGltZSkKCkNSLmdlbmVzIDwtIGNiaW5kKHQoTmV1cm8udHJhamVjdG9yaWVzQGFzc2F5cyRSTkFAZGF0YVtjKCJHbW5jIiwiVHJwNzMiLCAiTGh4MSIsICJCYXJobDIiKSxDUiRCYXJjb2Rlc10pLCBDUiAlPiUgc2VsZWN0KFBzZXVkb3RpbWUpKQoKQ1IuZ2VuZXMgIDwtIHJlc2hhcGUyOjptZWx0KENSLmdlbmVzLCBpZCA9IGMoIlBzZXVkb3RpbWUiKSkKCgpnZ3Bsb3QoQ1IuZ2VuZXMsIGFlcyh4PSBQc2V1ZG90aW1lLCB5PSB2YWx1ZSkpICsKIyAgZ2VvbV9wb2ludChhZXMoY29sb3I9IHZhcmlhYmxlKSwgc2l6ZT0wLjUpICsKICBnZW9tX3Ntb290aChtZXRob2Q9ImxvZXNzIiwgbj0gNTAsIGFlcyhjb2xvcj0gdmFyaWFibGUpKSArCiAgc2NhbGVfY29sb3JfbWFudWFsKHZhbHVlcz0gYyh3ZXNfcGFsZXR0ZSgiRmFudGFzdGljRm94MSIpWzE6M10sd2VzX3BhbGV0dGUoIkZhbnRhc3RpY0ZveDEiKVs1XSkpICsKICB5bGltKDAsTkEpCgpgYGAKCgojIyBQYWxsaWFsIG5ldXJvbnMgdHJhamVjdG9yeSBhbmFseXNpcwoKYGBge3J9CiMgRXh0cmFjdCBQYWxsaWFsIG5ldXJvbnMgdHJhamVjdG9yeSBnZW5lcwpQYWwucmVzIDwtIGFzLmRhdGEuZnJhbWUocHNldWRvLm1hdHVyYXRpb24uZGlmZi5maWx0ZXJlZFtwc2V1ZG8ubWF0dXJhdGlvbi5kaWZmLmZpbHRlcmVkJEFCQ3MgPCAwLF0pClBhbC5nZW5lcyA8LSByb3cubmFtZXMoUGFsLnJlcykKClBhbF9jdXJ2ZV9tYXRyaXggPC0gUGFsX2N1cnZlX21hdHJpeFtQYWwuZ2VuZXMsIF0KYGBgCgojIyMgR2VuZSBleHByZXNzaW9uIHByb2ZpbGVzIGFsb25nIHRoZSB0cmFqZWN0b3J5CgpgYGB7cn0KIyMgQ2x1c3RlciBnZW5lIGJ5IGV4cHJlc3Npb24gcHJvZmlsZXMKUHNldWRvdGltZS5nZW5lcy5jbHVzdGVycyA8LSBjbHVzdGVyOjpwYW0oYXMuZGlzdCgoMSAtIGNvcihNYXRyaXg6OnQoUGFsX2N1cnZlX21hdHJpeCksbWV0aG9kID0gInBlYXJzb24iKSkpLCBrPSA1KQoKUGFsLkdlbmUuZHluYW1pcXVlIDwtIGRhdGEuZnJhbWUoR2VuZT0gbmFtZXMoUHNldWRvdGltZS5nZW5lcy5jbHVzdGVycyRjbHVzdGVyaW5nKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXYXZlcz0gUHNldWRvdGltZS5nZW5lcy5jbHVzdGVycyRjbHVzdGVyaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIEdlbmUuQ2x1c3RlcnMgPSBQc2V1ZG90aW1lLmdlbmVzLmNsdXN0ZXJzJGNsdXN0ZXJpbmcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcS52YWwgPSBQYWwucmVzJHB2YWwsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQUJDcz0gUGFsLnJlcyRBQkNzCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgKSAlPiUgYXJyYW5nZShHZW5lLkNsdXN0ZXJzKQoKcm93Lm5hbWVzKFBhbC5HZW5lLmR5bmFtaXF1ZSkgPC0gUGFsLkdlbmUuZHluYW1pcXVlJEdlbmUKUGFsLkdlbmUuZHluYW1pcXVlJEdlbmUuQ2x1c3RlcnMgPC0gcGFzdGUwKCJDbHVzdC4iLCBQYWwuR2VuZS5keW5hbWlxdWUkR2VuZS5DbHVzdGVycykKYGBgCgpgYGB7ciBmaWcuZGltPWMoOSwgNSl9CiMgT3JkZXIgdGhlIHJvd3MgdXNpbmcgc2VyaWF0aW9uCmRzdCA8LSBhcy5kaXN0KCgxLWNvcihzY2FsZSh0KFBhbF9jdXJ2ZV9tYXRyaXgpKSwgbWV0aG9kID0gInBlYXJzb24iKSkpCnJvdy5zZXIgPC0gc2VyaWF0aW9uOjpzZXJpYXRlKGRzdCwgbWV0aG9kID0iUjJFIikgIyJSMkUiICNUU1AgIyJHVyIgIkdXX3dhcmQiCmdlbmUub3JkZXIgPC0gcm93bmFtZXMoUGFsX2N1cnZlX21hdHJpeFtnZXRfb3JkZXIocm93LnNlciksXSkKCiMgU2V0IGFubm90YXRpb24gY29sb3JzCnBhbCA8LSB3ZXNfcGFsZXR0ZSgiRGFyamVlbGluZzEiKQphbm5vLmNvbG9ycyA8LSBsaXN0KGxpbmVhZ2UgPSBjKFBhbGxpYWxfbmV1cm9ucz0iIzAyNmM5YSIsIENhamFsX1JldHppdXM9IiNjYzM5MWIiKSwKICAgICAgICAgICAgICAgICAgICBHZW5lLkNsdXN0ZXJzID0gYyhDbHVzdC4xID1wYWxbMV0gLCBDbHVzdC4yPXBhbFsyXSwgQ2x1c3QuMz1wYWxbM10sIENsdXN0LjQ9cGFsWzRdLCBDbHVzdC41PXBhbFs1XSkpCgoKcGhlYXRtYXA6OnBoZWF0bWFwKERpZmYuY3VydmVfbWF0cml4W2dlbmUub3JkZXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYygzMDA6MSwjUGFsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAzMDE6NjAwKV0sICNDUgogICAgICAgICAgICAgICAgICAgc2NhbGUgPSAicm93IiwKICAgICAgICAgICAgICAgICAgIGNsdXN0ZXJfcm93cyA9IEYsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX2NvbHMgPSBGLAogICAgICAgICAgICAgICAgICAgYW5ub3RhdGlvbl9yb3cgPSBQYWwuR2VuZS5keW5hbWlxdWUgJT4lIGRwbHlyOjpzZWxlY3QoR2VuZS5DbHVzdGVycyksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbCA9IGRhdGEuZnJhbWUobGluZWFnZSA9IHJlcChjKCJQYWxsaWFsX25ldXJvbnMiLCJDYWphbF9SZXR6aXVzIiksIGVhY2g9MzAwKSksCiAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uX2NvbG9ycyA9IGFubm8uY29sb3JzLAogICAgICAgICAgICAgICAgICAgc2hvd19jb2xuYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBzaG93X3Jvd25hbWVzID0gRiwKICAgICAgICAgICAgICAgICAgIGZvbnRzaXplX3JvdyA9IDgsCiAgICAgICAgICAgICAgICAgICBjb2xvciA9ICB2aXJpZGlzOjp2aXJpZGlzKDkpLAogICAgICAgICAgICAgICAgICAgYnJlYWtzID0gc2VxKC0yLjUsMi41LCBsZW5ndGgub3V0ID0gOSksCiAgICAgICAgICAgICAgICAgICBtYWluID0gIiIpCmBgYAoKV2UgbWFudWFsbHkgY29ycmVjdCB0aGUgcmVvcmRlcmluZyBzbyBnZW5lcyBhcmUgYWxpZ25lZCBmcm9tIHRvcCByaWdodCB0byBib3R0b20gbGVmdAoKYGBge3IgZmlnLmRpbT1jKDksIDUpfQpnZW5lLm9yZGVyIDwtIGdlbmUub3JkZXJbYygxOTk6MSwzNTI6MjAwKV0KCnBoZWF0bWFwOjpwaGVhdG1hcChEaWZmLmN1cnZlX21hdHJpeFtnZW5lLm9yZGVyLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGMoMzAwOjEsI1BhbAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgMzAxOjYwMCldLCAjQ1IKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgIGFubm90YXRpb25fcm93ID0gUGFsLkdlbmUuZHluYW1pcXVlICU+JSBkcGx5cjo6c2VsZWN0KEdlbmUuQ2x1c3RlcnMpLAogICAgICAgICAgICAgICAgICAgYW5ub3RhdGlvbl9jb2wgPSBkYXRhLmZyYW1lKGxpbmVhZ2UgPSByZXAoYygiUGFsbGlhbF9uZXVyb25zIiwiQ2FqYWxfUmV0eml1cyIpLCBlYWNoPTMwMCkpLAogICAgICAgICAgICAgICAgICAgYW5ub3RhdGlvbl9jb2xvcnMgPSBhbm5vLmNvbG9ycywKICAgICAgICAgICAgICAgICAgIHNob3dfY29sbmFtZXMgPSBGLAogICAgICAgICAgICAgICAgICAgc2hvd19yb3duYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBmb250c2l6ZV9yb3cgPSA4LAogICAgICAgICAgICAgICAgICAgY29sb3IgPSAgdmlyaWRpczo6dmlyaWRpcyg5KSwKICAgICAgICAgICAgICAgICAgIGJyZWFrcyA9IHNlcSgtMi41LDIuNSwgbGVuZ3RoLm91dCA9IDkpLAogICAgICAgICAgICAgICAgICAgbWFpbiA9ICIiKQpgYGAKCgoKYGBge3IgZmlnLmRpbT1jKDksIDUpfQphbm5vLmNvbG9ycyA8LSBsaXN0KENlbGwuc3RhdGUgPSBjKEN5Y2xpbmdfUkc9IiMwNDZjOWEiLCBEaWZmZXJlbnRpYXRpbmdfY2VsbHM9IiNlYmNiMmUiKSwKICAgICAgICAgICAgICAgICAgICBHZW5lLkNsdXN0ZXJzID0gYyhDbHVzdC4xID1wYWxbMV0gLCBDbHVzdC4yPXBhbFsyXSwgQ2x1c3QuMz1wYWxbM10sIENsdXN0LjQ9cGFsWzRdLCBDbHVzdC41PXBhbFs1XSkpCgpjb2wuYW5ubyA8LSBkYXRhLmZyYW1lKENlbGwuc3RhdGUgPSByZXAoYygiRGlmZmVyZW50aWF0aW5nX2NlbGxzIiwiQ3ljbGluZ19SRyIpLCBjKDIwMCwxMDApKSkKcm93bmFtZXMoY29sLmFubm8pIDwtIDMwMDoxCgpwaGVhdG1hcDo6cGhlYXRtYXAoUGFsX2N1cnZlX21hdHJpeFtnZW5lLm9yZGVyLDMwMDoxXSwKICAgICAgICAgICAgICAgICAgIHNjYWxlID0gInJvdyIsCiAgICAgICAgICAgICAgICAgICBjbHVzdGVyX3Jvd3MgPSBGLAogICAgICAgICAgICAgICAgICAgY2x1c3Rlcl9jb2xzID0gRiwKICAgICAgICAgICAgICAgICAgIGFubm90YXRpb25fcm93ID0gUGFsLkdlbmUuZHluYW1pcXVlICU+JSBkcGx5cjo6c2VsZWN0KEdlbmUuQ2x1c3RlcnMpLAogICAgICAgICAgICAgICAgICAgYW5ub3RhdGlvbl9jb2wgPSBjb2wuYW5ubywKICAgICAgICAgICAgICAgICAgIGFubm90YXRpb25fY29sb3JzID0gYW5uby5jb2xvcnMsCiAgICAgICAgICAgICAgICAgICBnYXBzX2NvbCA9IDIwMCwKICAgICAgICAgICAgICAgICAgIHNob3dfY29sbmFtZXMgPSBGLAogICAgICAgICAgICAgICAgICAgc2hvd19yb3duYW1lcyA9IEYsCiAgICAgICAgICAgICAgICAgICBmb250c2l6ZV9yb3cgPSA4LAogICAgICAgICAgICAgICAgICAgY29sb3IgPSAgdmlyaWRpczo6dmlyaWRpcyg5KSwKICAgICAgICAgICAgICAgICAgIGJyZWFrcyA9IHNlcSgtMi41LDIuNSwgbGVuZ3RoLm91dCA9IDkpLAogICAgICAgICAgICAgICAgICAgbWFpbiA9ICIiKQoKYGBgCgojIyMgR2VuZSBjbHVzdGVyIHRyZW5kCgpgYGB7ciBmaWcuZGltPWMoOSw2KSwgY2FjaGU9VFJVRX0KUGxvdC5jbHVzdC50cmVuZHMoTmV1cm8udHJhamVjdG9yaWVzLAogICAgICAgICAgICAgICAgICAgTGluZWFnZSA9ICJQYWxsaWFsX25ldXJvbnMiLAogICAgICAgICAgICAgICAgICAgV2hpY2guY2x1c3RlciA9IDE6NSwKICAgICAgICAgICAgICAgICAgIGNsdXN0Lmxpc3QgPSBQc2V1ZG90aW1lLmdlbmVzLmNsdXN0ZXJzJGNsdXN0ZXJpbmcsCiAgICAgICAgICAgICAgICAgICBTbW9vdGgubWV0aG9kID0gImdhbSIpCmBgYAoKYGBge3J9ClBhbC5nb3N0cmVzIDwtIGdvc3QocXVlcnkgPSBhcy5jaGFyYWN0ZXIoUGFsLkdlbmUuZHluYW1pcXVlJEdlbmUpLAogICAgICAgICAgICAgICAgb3JnYW5pc20gPSAibW11c2N1bHVzIiwgb3JkZXJlZF9xdWVyeSA9IEYsIAogICAgICAgICAgICAgICAgbXVsdGlfcXVlcnkgPSBGLCBzaWduaWZpY2FudCA9IFQsIGV4Y2x1ZGVfaWVhID0gVCwgCiAgICAgICAgICAgICAgICBtZWFzdXJlX3VuZGVycmVwcmVzZW50YXRpb24gPSBGLCBldmNvZGVzID0gVCwgCiAgICAgICAgICAgICAgICB1c2VyX3RocmVzaG9sZCA9IDAuMDUsIGNvcnJlY3Rpb25fbWV0aG9kID0gImZkciIsIAogICAgICAgICAgICAgICAgZG9tYWluX3Njb3BlID0gImFubm90YXRlZCIsIGN1c3RvbV9iZyA9IE5VTEwsIAogICAgICAgICAgICAgICAgbnVtZXJpY19ucyA9ICIiLCBzb3VyY2VzID0gYygiR086TUYiLCAiR086QlAiKSwgYXNfc2hvcnRfbGluayA9IEYpCgp3cml0ZS50YWJsZShhcHBseShQYWwuZ29zdHJlcyRyZXN1bHQsIDIsIGFzLmNoYXJhY3RlciksCiAgICAgICAgICAgICJQYWwuZ29zdHJlcy5jc3YiLCBzZXAgPSAiOyIsIHF1b3RlID0gRiwgcm93Lm5hbWVzID0gRikKYGBgCgoKYGBge3J9CkROQV9kYW1hZ2VfR090ZXJtIDwtIFBhbC5nb3N0cmVzJHJlc3VsdFtQYWwuZ29zdHJlcyRyZXN1bHQkdGVybV9pZCAlaW4lIGMoIkdPOjAwMDg2MzAiLCAiR086MDAzMDMzMCIsICJHTzowMDMxNTcxIiwgIkdPOjAwMDY5NzQiLCAiR086MDAwNjk3NyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJHTzowMDQ0NzczIiwgIkdPOjAwNDI3NzEiLCAiR086MDA0Mjc3MCIsICJHTzoyMDAxMDIxIiwgIkdPOjE5MDIyMjkiKSxdCgpETkFfZGFtYWdlX0dPdGVybVssYygxLDIsMyw1LDYsNywxMSldCmBgYAoKCiMgU2Vzc2lvbiBJbmZvCgpgYGB7cn0KI2RhdGUKZm9ybWF0KFN5cy50aW1lKCksICIlZCAlQiwgJVksICVILCVNIikKCiNQYWNrYWdlcyB1c2VkCnNlc3Npb25JbmZvKCkKYGBg