library(Seurat)
library(princurve)
library(monocle)
library(gprofiler2)
library(seriation)
library(Matrix)
library(dplyr)
library(RColorBrewer)
library(ggplot2)
library(ggExtra)
library(cowplot)
library(wesanderson)
#Set ggplot theme as classic
theme_set(theme_classic())
<- readRDS("../QC.filtered.clustered.cells.RDS") Hem.data
DimPlot(object = Hem.data,
group.by = "Cell_ident",
reduction = "spring",
cols = c("#ebcb2e", #"CR"
"#e7823a", #"ChP"
"#4cabdc", # Chp_prog
"#68b041", #"Dorso-Medial_pallium"
"#e46b6b", #"Hem"
"#e3c148", #"Medial_pallium"
"#046c9a", # Pallial
"#4990c9"#"Thalamic_eminence"
) )
$Lineage <- sapply(Hem.data$Cell_ident,
Hem.dataFUN = function(x) {
if (x %in% c("Cajal-Retzius_neurons", "Hem")) {
= "Cajal-Retzius_neurons"
x else if (x %in% c("Pallial_neurons", "Medial_pallium")) {
} = "Pallial_neurons"
x else if(x %in% c("ChP", "ChP_progenitors")) {
} = "Choroid_Plexus"
x else {
} = "other"
x
} })
DimPlot(Hem.data,
reduction = "spring",
group.by = "Lineage",
pt.size = 1,
cols = c("#cc391b","#e7823a","#969696","#026c9a")
+ NoAxes() )
<- subset(Hem.data, idents = c("Cajal-Retzius_neurons", "Pallial_neurons"))
Neurons.data
DimPlot(Neurons.data ,
reduction = "spring",
pt.size = 1,
cols = c("#cc391b","#026c9a")
+ NoAxes() )
<- Neurons.data@meta.data %>%
Trajectories.Hem select("Barcodes", "nUMI", "Spring_1", "Spring_2", "AP_signature1","BP_signature1", "EN_signature1", "LN_signature1", "Lineage") %>%
filter(Lineage == "Cajal-Retzius_neurons")
<- principal_curve(as.matrix(Trajectories.Hem[,c("Spring_1", "Spring_2")]),
fit smoother='lowess',
trace=TRUE,
f = .7,
stretch=0)
## Starting curve---distance^2: 45804778678
## Iteration 1---distance^2: 27732113
## Iteration 2---distance^2: 27728318
#The principal curve smoothed
<- as.data.frame(fit$s[order(fit$lambda),])
Hem.pc.line
#Pseudotime score
$PseudotimeScore <- fit$lambda/max(fit$lambda) Trajectories.Hem
if (cor(Trajectories.Hem$PseudotimeScore, Neurons.data@assays$SCT@data['Hmga2', Trajectories.Hem$Barcodes]) > 0) {
$PseudotimeScore <- -(Trajectories.Hem$PseudotimeScore - max(Trajectories.Hem$PseudotimeScore))
Trajectories.Hem }
<- Neurons.data@meta.data %>%
Trajectories.Pallial select("Barcodes", "nUMI", "Spring_1", "Spring_2", "AP_signature1","BP_signature1", "EN_signature1", "LN_signature1", "Lineage") %>%
filter(Lineage == "Pallial_neurons")
<- principal_curve(as.matrix(Trajectories.Pallial[,c("Spring_1", "Spring_2")]),
fit smoother='lowess',
trace=TRUE,
f = .7,
stretch=0)
## Starting curve---distance^2: 26984853690
## Iteration 1---distance^2: 22153700
## Iteration 2---distance^2: 22179462
## Iteration 3---distance^2: 22180297
#The principal curve smoothed
<- as.data.frame(fit$s[order(fit$lambda),])
Pallial.pc.line
#Pseudotime score
$PseudotimeScore <- fit$lambda/max(fit$lambda) Trajectories.Pallial
if (cor(Trajectories.Pallial$PseudotimeScore, Neurons.data@assays$SCT@data['Hmga2', Trajectories.Pallial$Barcodes]) > 0) {
$PseudotimeScore <- -(Trajectories.Pallial$PseudotimeScore - max(Trajectories.Pallial$PseudotimeScore))
Trajectories.Pallial }
<- rbind(Trajectories.Pallial, Trajectories.Hem) Trajectories.neurons
<- brewer.pal(n =11, name = "Spectral")
cols
ggplot(Trajectories.neurons, aes(Spring_1, Spring_2)) +
geom_point(aes(color=PseudotimeScore), size=2, shape=16) +
scale_color_gradientn(colours=rev(cols), name='Speudotime score') +
geom_line(data=Pallial.pc.line, color="#026c9a", size=0.77) +
geom_line(data=Hem.pc.line, color="#cc391b", size=0.77)
<- NormalizeData(Neurons.data, normalization.method = "LogNormalize", scale.factor = 10000, assay = "RNA") Neurons.data
# Neurog2
<- FeaturePlot(object = Neurons.data,
p1 features = c("Neurog2"),
pt.size = 0.5,
cols = c("grey90", brewer.pal(9,"YlGnBu")),
reduction = "spring",
order = T) & NoAxes()
$Neurog2 <- Neurons.data@assays$RNA@data["Neurog2", Trajectories.neurons$Barcodes]
Trajectories.neurons
<- ggplot(Trajectories.neurons, aes(x= PseudotimeScore, y= Neurog2)) +
p2 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
# Tbr1
<- FeaturePlot(object = Neurons.data ,
p3 features = c("Tbr1"),
pt.size = 0.5,
cols = c("grey90", brewer.pal(9,"YlGnBu")),
reduction = "spring",
order = T) & NoAxes()
$Tbr1 <- Neurons.data@assays$RNA@data["Tbr1", Trajectories.neurons$Barcodes]
Trajectories.neurons
<- ggplot(Trajectories.neurons, aes(x= PseudotimeScore, y= Tbr1)) +
p4 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
# Mapt
<- FeaturePlot(object = Neurons.data ,
p5 features = c("Mapt"),
pt.size = 0.5,
cols = c("grey90", brewer.pal(9,"YlGnBu")),
reduction = "spring",
order = T) & NoAxes()
$Mapt <- Neurons.data@assays$RNA@data["Mapt", Trajectories.neurons$Barcodes]
Trajectories.neurons
<- ggplot(Trajectories.neurons, aes(x= PseudotimeScore, y= Mapt)) +
p6 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
+ p2 + p3 + p4 + p5 + p6 + patchwork::plot_layout(ncol = 2) p1
Since we observe the first 25% of both trajectories are occupied by few, likely progenitor cells, we shift this cell along the axis
<- Trajectories.neurons%>%
Pseudotime.intervals select(Lineage, PseudotimeScore) %>%
mutate(Pseudotime.bins = cut(Trajectories.neurons$PseudotimeScore, seq(0, max(Trajectories.neurons$PseudotimeScore) + 0.05, 0.05), dig.lab = 2, right = FALSE)) %>%
group_by(Lineage, Pseudotime.bins) %>%
summarise(n=n())
ggplot(Pseudotime.intervals, aes(x=Pseudotime.bins, y=n, fill=Lineage)) +
geom_bar(stat = "identity", width = 0.90) +
theme(axis.text.x = element_text(angle = 45, hjust=1))+
scale_fill_manual(values= c("#cc391b", "#026c9a"))
<- sapply(Trajectories.neurons$PseudotimeScore,
score FUN = function(x) if (x <= 0.2) {x= 0.2} else { x=x })
$PseudotimeScore.shifted <- (score - min(score)) / (max(score) - min(score)) Trajectories.neurons
# Neurog2
<- FeaturePlot(object = Neurons.data ,
p1 features = c("Neurog2"),
pt.size = 0.5,
cols = c("grey90", brewer.pal(9,"YlGnBu")),
reduction = "spring",
order = T) & NoAxes()
<- ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= Neurog2)) +
p2 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
# Tbr1
<- FeaturePlot(object = Neurons.data ,
p3 features = c("Tbr1"),
pt.size = 0.5,
cols = c("grey90", brewer.pal(9,"YlGnBu")),
reduction = "spring",
order = T) & NoAxes()
<- ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= Tbr1)) +
p4 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
# Mapt
<- FeaturePlot(object = Neurons.data ,
p5 features = c("Mapt"),
pt.size = 0.5,
cols = c("grey90", brewer.pal(9,"YlGnBu")),
reduction = "spring",
order = T) & NoAxes()
<- ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= Mapt)) +
p6 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
+ p2 + p3 + p4 + p5 + p6 + patchwork::plot_layout(ncol = 2) p1
ggplot(Trajectories.neurons, aes(x= PseudotimeScore.shifted, y= nUMI/10000)) +
geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, aes(color= Lineage)) +
ylim(0,NA)
rm(list = ls()[!ls() %in% c("Trajectories.neurons")])
<- readRDS("../ProgenitorsDiversity/Progenitors.RDS") Progenitors.data
table(Progenitors.data$Cell_ident)
##
## Dorso-Medial_pallium Hem Medial_pallium
## 3451 1954 2719
To balance the number of progenitors in both domain we will only work with Hem and Medial_pallium annotated cells. Since we are using pallial cell to contrast CR specific trajectory we think this approximation will not significantly affect our analysis.
<- subset(Progenitors.data, idents = c("Hem", "Medial_pallium")) Progenitors.data
<- DimPlot(Progenitors.data,
p1 reduction = "spring",
pt.size = 0.5,
cols = c("#e3c148", "#e46b6b")) + NoAxes()
<- FeaturePlot(object = Progenitors.data,
p2 features = "Revelio.cc",
pt.size = 0.5,
cols = rev(brewer.pal(10,"Spectral")),
reduction = "spring",
order = T) & NoAxes()
<- DimPlot(object = Progenitors.data,
p3 group.by = "Revelio.phase",
pt.size = 0.5,
reduction = "spring",
cols = c(wes_palette("FantasticFox1")[1:3],"grey40",wes_palette("FantasticFox1")[5])) & NoAxes()
+ p2 + p3 + patchwork::plot_layout(ncol = 2) p1
# Start with neurons data
<- Trajectories.neurons %>% select(Barcodes, nUMI, Spring_1, Spring_2, AP_signature1, BP_signature1, EN_signature1, LN_signature1, Lineage)
Trajectories.all
$Pseudotime <- Trajectories.neurons$PseudotimeScore.shifted + 0.5
Trajectories.all$Phase <- NA Trajectories.all
# Add progenitors data
<- Progenitors.data@meta.data %>%
Trajectories.progenitors select(Barcodes, nUMI, Spring_1, Spring_2, AP_signature1, BP_signature1, EN_signature1, LN_signature1) %>%
mutate(Lineage= ifelse(Progenitors.data$Cell_ident == "Medial_pallium", "Pallial_neurons", "Cajal-Retzius_neurons") ,
Pseudotime= Progenitors.data$Revelio.cc/2,
Phase = Progenitors.data$Revelio.phase)
<- rbind(Trajectories.all, Trajectories.progenitors)
Trajectories.all
$Phase <- factor(Trajectories.all$Phase, levels = c("G1.S", "S", "G2", "G2.M", "M.G1")) Trajectories.all
<- ggplot(Trajectories.all, aes(Spring_1, Spring_2)) +
p1 geom_point(aes(color=Pseudotime), size=0.5) +
scale_color_gradientn(colours=rev(brewer.pal(n =11, name = "Spectral")), name='Pseudotime score')
<- ggplot(Trajectories.all, aes(Spring_1, Spring_2)) +
p2 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a"))
+ p2 p1
<- ggplot(Trajectories.all, aes(x= Pseudotime, y= nUMI/10000)) +
p1 geom_point(aes(color= Phase), size=0.5) +
scale_color_manual(values= c(wes_palette("FantasticFox1")[1:3],"grey40",wes_palette("FantasticFox1")[5])) +
geom_smooth(method="loess", n= 50, fill="grey") +
ylim(0,NA)
<- ggplot(Trajectories.all, aes(x= Pseudotime, y= nUMI/10000)) +
p2 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, fill="grey") +
ylim(0,NA)
/ p2 p1
<- ggplot(Trajectories.all, aes(x= Pseudotime, y= AP_signature1)) +
p1 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, fill="grey")
<- ggplot(Trajectories.all, aes(x= Pseudotime, y= BP_signature1)) +
p2 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, fill="grey")
<- ggplot(Trajectories.all, aes(x= Pseudotime, y= EN_signature1)) +
p3 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, fill="grey")
<- ggplot(Trajectories.all, aes(x= Pseudotime, y= LN_signature1)) +
p4 geom_point(aes(color= Lineage), size=0.5) +
scale_color_manual(values= c("#cc391b", "#026c9a")) +
geom_smooth(method="loess", n= 50, fill="grey")
/ p2 / p3 / p4 p1
rm(list = ls()[!ls() %in% c("Trajectories.all")])
<- readRDS("../QC.filtered.clustered.cells.RDS") Hem.data
<- CreateSeuratObject(counts = Hem.data@assays$RNA@data[, Trajectories.all$Barcodes],
Neuro.trajectories meta.data = Trajectories.all)
<- as.matrix(Neuro.trajectories@meta.data %>% select("Spring_1", "Spring_2"))
spring
"spring"]] <- CreateDimReducObject(embeddings = spring, key = "Spring_", assay = DefaultAssay(Neuro.trajectories)) Neuro.trajectories[[
<- FeaturePlot(object = Neuro.trajectories,
p1 features = "Pseudotime",
pt.size = 0.5,
cols = rev(colorRampPalette(brewer.pal(n =11, name = "Spectral"))(100)),
reduction = "spring",
order = T) & NoAxes()
<- DimPlot(object = Neuro.trajectories,
p2 group.by = "Lineage",
pt.size = 0.5,
reduction = "spring",
cols = c("#cc391b", "#026c9a")) & NoAxes()
<- DimPlot(object = Neuro.trajectories,
p3 group.by = "Phase",
pt.size = 0.5,
reduction = "spring",
cols = c(wes_palette("FantasticFox1")[1:3],"grey40",wes_palette("FantasticFox1")[5])) & NoAxes()
+ p2 + p3 p1
rm(list = ls()[!ls() %in% c("Neuro.trajectories")])
<- NormalizeData(Neuro.trajectories, normalization.method = "LogNormalize", scale.factor = 10000, assay = "RNA") Neuro.trajectories
<- FindVariableFeatures(Neuro.trajectories, selection.method = "disp", nfeatures = 3000, assay = "RNA") Neuro.trajectories
source("../Functions/functions_GeneTrends.R")
Plot.Genes.trend(Seurat.data= Neuro.trajectories,
group.by = "Lineage",
genes= c("Gas1","Sox2",
"Neurog2", "Btg2",
"Tbr1", "Mapt",
"Trp73", "Foxg1"))
Plot.Genes.trend(Seurat.data= Neuro.trajectories,
group.by = "Lineage",
genes= c("Gmnc", "Mcidas",
"Foxj1", "Trp73",
"Lhx1", "Cdkn1a"))
Plot.Genes.trend(Seurat.data= Neuro.trajectories,
group.by = "Lineage",
genes= c("Mki67", "Top2a",
"H2afx", "Cdkn1c"))
# Transfer metadata
<- data.frame(Barcode= Neuro.trajectories$Barcodes,
meta.data Lineage= Neuro.trajectories$Lineage,
Pseudotime= Neuro.trajectories$Pseudotime,
Phase= Neuro.trajectories$Phase)
<- new('AnnotatedDataFrame', data = meta.data)
Annot.data
# Transfer counts data
<- Neuro.trajectories[["RNA"]]@var.features
var.genes = data.frame(gene_short_name = rownames(Neuro.trajectories[["RNA"]]@data[var.genes,]),
count.data row.names = rownames(Neuro.trajectories[["RNA"]]@data[var.genes,]))
<- new('AnnotatedDataFrame', data = count.data)
feature.data
# Create the CellDataSet object including variable genes only
<- newCellDataSet(Neuro.trajectories[["RNA"]]@counts[var.genes,],
gbm_cds phenoData = Annot.data,
featureData = feature.data,
lowerDetectionLimit = 0,
expressionFamily = negbinomial())
<- estimateSizeFactors(gbm_cds)
gbm_cds <- estimateDispersions(gbm_cds)
gbm_cds <- detectGenes(gbm_cds, min_expr = 0.1) gbm_cds
rm(list = ls()[!ls() %in% c("Neuro.trajectories", "gbm_cds", "Gene.Trend", "Plot.Genes.trend")])
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 3562116 190.3 6272701 335.0 6272701 335.0
## Vcells 102185856 779.7 377971751 2883.7 618468591 4718.6
# Split pallial and subpallial cells for gene expression fitting
#Pallial cells
<- Neuro.trajectories@meta.data %>%
Pallialcells filter(Lineage == "Pallial_neurons") %>%
pull(Barcodes)
# Cajal-Retzius cells
<- Neuro.trajectories@meta.data %>%
CRcells filter(Lineage == "Cajal-Retzius_neurons") %>%
pull(Barcodes)
# We filter-out genes detected in less than 200 or 200 cells along Pallial or CR lineages
<- Matrix::rowSums(Neuro.trajectories@assays$RNA@counts[,Pallialcells] > 0)
num.cells <- names(x = num.cells[which(x = num.cells >= 200)])
Pallial.expressed
<- Matrix::rowSums(Neuro.trajectories@assays$RNA@counts[,CRcells] > 0)
num.cells <- names(x = num.cells[which(x = num.cells >= 200)])
CR.expressed
<- rownames(gbm_cds)[rownames(gbm_cds) %in% intersect(Pallial.expressed, CR.expressed)] Input.genes
<- differentialGeneTest(gbm_cds[Input.genes, Pallialcells],
Pallial.genes fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)",
reducedModelFormulaStr = "~1",
cores = parallel::detectCores() - 2)
#Filter based on FDR
<- Pallial.genes %>% filter(qval < 1e-3) Pallial.genes.filtered
<- differentialGeneTest(gbm_cds[Input.genes, CRcells],
CRcells.genes fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)",
reducedModelFormulaStr = "~1",
cores = parallel::detectCores() - 2)
#Filter based on FDR
<- CRcells.genes %>% filter(qval < 1e-3) CRcells.genes.filtered
<- intersect(Pallial.genes.filtered$gene_short_name, CRcells.genes.filtered$gene_short_name) Common.genes
# Smooth genes expression along the two trajectories
<- 300
nPoints
= list()
new_data for (Lineage in unique(pData(gbm_cds)$Lineage)){
length(new_data) + 1]] = data.frame(Pseudotime = seq(min(pData(gbm_cds)$Pseudotime), max(pData(gbm_cds)$Pseudotime), length.out = nPoints), Lineage=Lineage)
new_data[[
}
= do.call(rbind, new_data)
new_data
# Smooth gene expression
<- genSmoothCurves(gbm_cds[as.character(Common.genes),],
curve_matrix trend_formula = "~sm.ns(Pseudotime, df = 3)*Lineage",
relative_expr = TRUE,
new_data = new_data,
cores= parallel::detectCores() - 2)
# Extract genes with person's cor > 0.6 between the 2 trajectories
<- scale(t(curve_matrix[,c(1:300)])) #Pallial points
Pallial.smoothed <- scale(t(curve_matrix[,c(301:600)])) #CR points
CR.smoothed
<- cor(Pallial.smoothed, CR.smoothed, method = "pearson")
mat
<- diag(mat)
Gene.Cor hist(Gene.Cor, breaks = 100)
abline(v=0.8,col=c("blue"))
<- names(Gene.Cor[Gene.Cor > 0.8]) PanNeuro.genes
# Order rows using seriation
<- as.dist((1-cor(scale(t(curve_matrix[PanNeuro.genes,c(600:301)])), method = "pearson")))
dst <- seriate(dst, method ="MDS_angle") #MDS_angle
row.ser <- PanNeuro.genes[get_order(row.ser)]
gene.order
<- list(lineage = c(Pallial="#026c9a",CR="#cc391b"))
anno.colors
::pheatmap(curve_matrix[rev(gene.order),
pheatmapc(1:300, 301:600)], #CR
scale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_col = data.frame(lineage = rep(c("Pallial","CR"), each=300)),
annotation_colors = anno.colors,
show_colnames = F,
show_rownames = T,
fontsize_row = 2,
color = viridis::viridis(10),
breaks = seq(-2.5,2.5, length.out = 10),
main = "")
rm(list = ls()[!ls() %in% c("Neuro.trajectories", "gbm_cds", "Gene.Trend", "Plot.Genes.trend")])
gc()
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 3599594 192.3 6272701 335 6272701 335.0
## Vcells 102281635 780.4 302377401 2307 618468591 4718.6
<- differentialGeneTest(gbm_cds[fData(gbm_cds)$num_cells_expressed > 80,],
pseudo.maturation.diff fullModelFormulaStr = "~sm.ns(Pseudotime, df = 3)*Lineage",
reducedModelFormulaStr = "~sm.ns(Pseudotime, df = 3)",
cores = parallel::detectCores() - 2)
# Filter genes based on FDR
<- pseudo.maturation.diff %>% filter(qval < 1e-40) pseudo.maturation.diff.filtered
# Create a new pseudo-DV vector of 200 points
<- 300
nPoints
= list()
new_data for (Lineage in unique(pData(gbm_cds)$Lineage)){
length(new_data) + 1]] = data.frame(Pseudotime = seq(min(pData(gbm_cds)$Pseudotime), max(pData(gbm_cds)$Pseudotime), length.out = nPoints), Lineage=Lineage)
new_data[[
}
= do.call(rbind, new_data)
new_data
# Smooth gene expression
<- genSmoothCurves(gbm_cds[as.character(pseudo.maturation.diff.filtered$gene_short_name),],
Diff.curve_matrix trend_formula = "~sm.ns(Pseudotime, df = 3)*Lineage",
relative_expr = TRUE,
new_data = new_data,
cores= parallel::detectCores() - 2)
# Extract matrix containing smoothed curves for each lineages
<- Diff.curve_matrix[, 1:nPoints] #Pallial points
Pal_curve_matrix <- Diff.curve_matrix[, (nPoints + 1):(2 * nPoints)] #CR points
CR_curve_matrix
# Direction of the comparison : postive ABCs <=> Upregulated in CR lineage
<- CR_curve_matrix - Pal_curve_matrix
ABCs_res
# Average logFC between the 2 curves
<- log2(CR_curve_matrix/ (Pal_curve_matrix + 0.1))
ILR_res
<- apply(ABCs_res, 1, function(x, nPoints) {
ABCs_res <- (x[1:(nPoints - 1)] + x[2:(nPoints)])/2
avg_delta_x <- (100/(nPoints - 1))
step <- round(sum(avg_delta_x * step), 3)
res return(res)},
nPoints = nPoints) # Compute the area below the curve
<- cbind(ABCs_res, ILR_res[,ncol(ILR_res)])
ABCs_res colnames(ABCs_res)<- c("ABCs", "Endpoint_ILR")
# Import ABC values into the DE test results table
<- cbind(pseudo.maturation.diff.filtered[,1:4],
pseudo.maturation.diff.filtered
ABCs_res,5:6]) pseudo.maturation.diff.filtered[,
# Extract Cajal-Retzius expressed genes
<- as.data.frame(pseudo.maturation.diff.filtered[pseudo.maturation.diff.filtered$ABCs > 0,])
CR.res <- row.names(CR.res)
CR.genes
<- CR_curve_matrix[CR.genes, ] CR_curve_matrix
<- cluster::pam(as.dist((1 - cor(Matrix::t(CR_curve_matrix),method = "pearson"))), k= 5)
Pseudotime.genes.clusters
<- data.frame(Gene= names(Pseudotime.genes.clusters$clustering),
CR.Gene.dynamique Waves= Pseudotime.genes.clusters$clustering,
Gene.Clusters = Pseudotime.genes.clusters$clustering,
q.val = CR.res$qval,
ABCs= CR.res$ABCs
%>% arrange(Gene.Clusters)
)
row.names(CR.Gene.dynamique) <- CR.Gene.dynamique$Gene
$Gene.Clusters <- paste0("Clust.", CR.Gene.dynamique$Gene.Clusters)
CR.Gene.dynamique
write.table(CR.Gene.dynamique, "CR_dynamic_genes.csv", sep = ";", quote = F, row.names = F)
# Order the rows using seriation
<- as.dist((1-cor(scale(t(CR_curve_matrix)), method = "pearson")))
dst <- seriation::seriate(dst, method ="R2E") #"R2E" #TSP #"GW" "GW_ward"
row.ser <- rownames(CR_curve_matrix[get_order(row.ser),])
gene.order
# Set annotation colors
<- wes_palette("Darjeeling1")
pal <- list(lineage = c(Pallial_neurons="#026c9a", Cajal_Retzius="#cc391b"),
anno.colors Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))
::pheatmap(Diff.curve_matrix[gene.order,
pheatmapc(300:1,#Pal
301:600)], #CR
scale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
annotation_colors = anno.colors,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
We manually correct the reordering so genes are aligned from top left to bottom rigth
<- gene.order[c(243:1,622:244)]
gene.order
::pheatmap(Diff.curve_matrix[gene.order,
pheatmapc(300:1,#Pal
301:600)], #CR
scale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
annotation_colors = anno.colors,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
<- list(Cell.state = c(Cycling_RG="#046c9a", Differentiating_cells="#ebcb2e"),
anno.colors Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))
<- data.frame(Cell.state = rep(c("Cycling_RG","Differentiating_cells"), c(100,200)))
col.anno rownames(col.anno) <- 301:600
::pheatmap(CR_curve_matrix[gene.order,],
pheatmapscale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
annotation_col = col.anno,
annotation_colors = anno.colors,
gaps_col = 100,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
<- Neuro.trajectories@meta.data %>%
diff.state filter(Lineage == "Cajal-Retzius_neurons") %>%
select("AP_signature1", "BP_signature1", "EN_signature1", "LN_signature1", "Pseudotime")
<- loess(AP_signature1 ~ Pseudotime, diff.state)
AP.loess <- predict(AP.loess,
AP.smooth seq(0.01,1.5, length.out= 300))
<- loess(BP_signature1 ~ Pseudotime, diff.state)
BP.loess <- predict(BP.loess,
BP.smooth seq(0.01,1.5, length.out= 300))
<- loess(EN_signature1 ~ Pseudotime, diff.state)
EN.loess <- predict(EN.loess,
EN.smooth seq(0.01,1.5, length.out= 300))
<- loess(LN_signature1 ~ Pseudotime, diff.state)
LN.loess <- predict(LN.loess,
LN.smooth seq(0.01,1.5, length.out= 300))
<- cbind(AP.smooth, BP.smooth, EN.smooth, LN.smooth) Smoothed.states
<- pheatmap::pheatmap(as.data.frame(t(Smoothed.states)),
heatmap.states scale = "row",
cluster_rows = F,
cluster_cols = F,
gaps_col = 100,
gaps_row = c(1,2,3),
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = rev(colorRampPalette(brewer.pal(n= 8, name = "RdBu"))(100)),
breaks = seq(-1,1, length.out = 100),
main = "")
<- pheatmap::pheatmap(CR_curve_matrix[gene.order,],
heatmap.gene scale = "row",
cluster_rows = F,
cluster_cols = F,
gaps_col = 100,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
::plot_grid(heatmap.states$gtable, heatmap.gene$gtable,
cowplotncol = 1,
align = "v",
rel_heights = c(1,3),
greedy = T)
source("../Functions/functions_GeneClusterTrend.R")
Plot.clust.trends(Neuro.trajectories,
Lineage = "Cajal-Retzius_neurons",
Which.cluster = 1:5,
clust.list = Pseudotime.genes.clusters$clustering,
Smooth.method = "gam")
<- gost(query = list("Clust.1" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.1") %>% pull(Gene) %>% as.character(),
CR.gostres "Clust.2" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.2") %>% pull(Gene) %>% as.character(),
"Clust.3" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.3") %>% pull(Gene) %>% as.character(),
"Clust.4" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.4") %>% pull(Gene) %>% as.character(),
"Clust.5" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.5") %>% pull(Gene) %>% as.character()),
organism = "mmusculus", ordered_query = F,
multi_query = F, significant = T, exclude_iea = T,
measure_underrepresentation = F, evcodes = T,
user_threshold = 0.05, correction_method = "fdr",
domain_scope = "annotated", custom_bg = NULL,
numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)
write.table(apply(CR.gostres$result,2,as.character),
"CR_GO_res-by-waves.csv", sep = ";", quote = F, row.names = F)
<- CR.gostres$result[CR.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977","GO:0033554",
DNA_damage_GOterm "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]
c(9,1,2,3,5,6,7,11)] DNA_damage_GOterm[,
<- readRDS("../QC.filtered.clustered.cells.RDS") Hem.data
We took the 28 genes from (Lewis & Stracker 2021)[https://doi.org/10.1016/j.semcdb.2020.04.007]
<- list(c("Trp73", "Gmnc", "Foxj1", "Myb", "Ccno", "Ccdc67", "Mcidas", "E2f4", "E2f5", "Ahr", "Trrap", "Cdc20b", "Ccdc78", "Rfx2", "Rfx3", "Foxn4", "Fank1", "Jazf1", "Ccna1", "Nek10", "Plk4", "Cep63", "Cep152", "Sass6", "Pcnt", "Pcm1", "Cetn2", "Tfdp1"))
MCC.genes
<- AddModuleScore(Hem.data,
Hem.data features = MCC.genes,
name = "MCC_score")
<- FeaturePlot(object = Hem.data,
p1 features = c("MCC_score1"),
pt.size = 0.5,
cols = rev(brewer.pal(10,"Spectral")),
reduction = "spring",
order = T) & NoAxes()
<- DNA_damage_GOterm %>%
DNA_damage_genes filter(query %in% c("Clust.2", "Clust.3", "Clust.4")) %>%
filter(term_id == "GO:0033554") %>%
pull(intersection) %>% strsplit("\\,") %>% unlist() %>% unique()
<- AddModuleScore(Hem.data,
Hem.data features = DNA_damage_genes,
name = "cellular_response_to_stress_score")
<- FeaturePlot(object = Hem.data,
p2 features = c("cellular_response_to_stress_score1"),
pt.size = 0.5,
cols = rev(brewer.pal(10,"Spectral")),
reduction = "spring",
order = T) & NoAxes()
+ p2 + patchwork::plot_layout(ncol = 2) p1
<- gost(query = as.character(CR.Gene.dynamique$Gene),
CR.gostres organism = "mmusculus", ordered_query = F,
multi_query = F, significant = T, exclude_iea = T,
measure_underrepresentation = F, evcodes = T,
user_threshold = 0.05, correction_method = "fdr",
domain_scope = "annotated", custom_bg = NULL,
numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)
write.table(apply(CR.gostres$result,2,as.character),
"CR_GO_res.csv", sep = ";", quote = F, row.names = F)
<- CR.gostres$result[CR.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977",
DNA_damage_GOterm "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]
c(1,2,3,5,6,7,11)] DNA_damage_GOterm[,
<- read.table("../ChoroidPlexus_trajectory/ChP.Gene.dynamique.csv", sep = ";", header = T, row.names = 1) ChP_dynamic_genes
<- CR.Gene.dynamique %>% filter(Gene %in% ChP_dynamic_genes$Gene)
CR_ChP_common_genes write.table(CR_ChP_common_genes, "CR-ChP_common_dynamic.csv", sep = ";", quote = F, row.names = F)
<- gene.order[gene.order %in% CR_ChP_common_genes$Gene]
gene.order2
::pheatmap(CR_curve_matrix[gene.order2,],
pheatmapscale = "row",
cluster_rows = F,
cluster_cols = F,
#annotation_row = CR.Gene.dynamique %>% dplyr::select(Gene.Clusters),
#annotation_col = col.anno,
#annotation_colors = anno.colors,
gaps_col = 100,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
<- gost(query = list("Clust.1" = CR_ChP_common_genes %>% filter(Gene.Clusters == "Clust.1") %>% pull(Gene) %>% as.character(),
CR_ChP_common.gostres "Clust.2" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.2") %>% pull(Gene) %>% as.character(),
"Clust.3" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.3") %>% pull(Gene) %>% as.character(),
"Clust.4" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.4") %>% pull(Gene) %>% as.character(),
"Clust.5" = CR.Gene.dynamique %>% filter(Gene.Clusters == "Clust.5") %>% pull(Gene) %>% as.character()),
organism = "mmusculus", ordered_query = F,
multi_query = F, significant = T, exclude_iea = T,
measure_underrepresentation = F, evcodes = T,
user_threshold = 0.05, correction_method = "fdr",
domain_scope = "annotated", custom_bg = NULL,
numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)
write.table(apply(CR_ChP_common.gostres$result,2,as.character),
"CR_ChP_common_GO_res-by-waves.csv", sep = ";", quote = F, row.names = F)
<- CR_ChP_common.gostres$result[CR_ChP_common.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977",
DNA_damage_GOterm "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]
c(1,2,3,5,6,7,11)] DNA_damage_GOterm[,
<- gost(query = as.character(CR_ChP_common_genes$Gene),
CR_ChP_common.gostres organism = "mmusculus", ordered_query = F,
multi_query = F, significant = T, exclude_iea = T,
measure_underrepresentation = F, evcodes = T,
user_threshold = 0.05, correction_method = "fdr",
domain_scope = "annotated", custom_bg = NULL,
numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)
write.table(apply(CR_ChP_common.gostres$result,2,as.character),
"CR_ChP_common_GO_res_all.csv", sep = ";", quote = F, row.names = F)
<- Neuro.trajectories@meta.data %>% filter(Lineage == "Cajal-Retzius_neurons") %>% select(Barcodes,Pseudotime)
CR
<- cbind(t(Neuro.trajectories@assays$RNA@data[c("Gmnc","Trp73", "Lhx1", "Barhl2"),CR$Barcodes]), CR %>% select(Pseudotime))
CR.genes
<- reshape2::melt(CR.genes, id = c("Pseudotime"))
CR.genes
ggplot(CR.genes, aes(x= Pseudotime, y= value)) +
# geom_point(aes(color= variable), size=0.5) +
geom_smooth(method="loess", n= 50, aes(color= variable)) +
scale_color_manual(values= c(wes_palette("FantasticFox1")[1:3],wes_palette("FantasticFox1")[5])) +
ylim(0,NA)
# Extract Pallial neurons trajectory genes
<- as.data.frame(pseudo.maturation.diff.filtered[pseudo.maturation.diff.filtered$ABCs < 0,])
Pal.res <- row.names(Pal.res)
Pal.genes
<- Pal_curve_matrix[Pal.genes, ] Pal_curve_matrix
## Cluster gene by expression profiles
<- cluster::pam(as.dist((1 - cor(Matrix::t(Pal_curve_matrix),method = "pearson"))), k= 5)
Pseudotime.genes.clusters
<- data.frame(Gene= names(Pseudotime.genes.clusters$clustering),
Pal.Gene.dynamique Waves= Pseudotime.genes.clusters$clustering,
Gene.Clusters = Pseudotime.genes.clusters$clustering,
q.val = Pal.res$pval,
ABCs= Pal.res$ABCs
%>% arrange(Gene.Clusters)
)
row.names(Pal.Gene.dynamique) <- Pal.Gene.dynamique$Gene
$Gene.Clusters <- paste0("Clust.", Pal.Gene.dynamique$Gene.Clusters) Pal.Gene.dynamique
# Order the rows using seriation
<- as.dist((1-cor(scale(t(Pal_curve_matrix)), method = "pearson")))
dst <- seriation::seriate(dst, method ="R2E") #"R2E" #TSP #"GW" "GW_ward"
row.ser <- rownames(Pal_curve_matrix[get_order(row.ser),])
gene.order
# Set annotation colors
<- wes_palette("Darjeeling1")
pal <- list(lineage = c(Pallial_neurons="#026c9a", Cajal_Retzius="#cc391b"),
anno.colors Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))
::pheatmap(Diff.curve_matrix[gene.order,
pheatmapc(300:1,#Pal
301:600)], #CR
scale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_row = Pal.Gene.dynamique %>% dplyr::select(Gene.Clusters),
annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
annotation_colors = anno.colors,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
We manually correct the reordering so genes are aligned from top right to bottom left
<- gene.order[c(199:1,352:200)]
gene.order
::pheatmap(Diff.curve_matrix[gene.order,
pheatmapc(300:1,#Pal
301:600)], #CR
scale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_row = Pal.Gene.dynamique %>% dplyr::select(Gene.Clusters),
annotation_col = data.frame(lineage = rep(c("Pallial_neurons","Cajal_Retzius"), each=300)),
annotation_colors = anno.colors,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
<- list(Cell.state = c(Cycling_RG="#046c9a", Differentiating_cells="#ebcb2e"),
anno.colors Gene.Clusters = c(Clust.1 =pal[1] , Clust.2=pal[2], Clust.3=pal[3], Clust.4=pal[4], Clust.5=pal[5]))
<- data.frame(Cell.state = rep(c("Differentiating_cells","Cycling_RG"), c(200,100)))
col.anno rownames(col.anno) <- 300:1
::pheatmap(Pal_curve_matrix[gene.order,300:1],
pheatmapscale = "row",
cluster_rows = F,
cluster_cols = F,
annotation_row = Pal.Gene.dynamique %>% dplyr::select(Gene.Clusters),
annotation_col = col.anno,
annotation_colors = anno.colors,
gaps_col = 200,
show_colnames = F,
show_rownames = F,
fontsize_row = 8,
color = viridis::viridis(9),
breaks = seq(-2.5,2.5, length.out = 9),
main = "")
Plot.clust.trends(Neuro.trajectories,
Lineage = "Pallial_neurons",
Which.cluster = 1:5,
clust.list = Pseudotime.genes.clusters$clustering,
Smooth.method = "gam")
<- gost(query = as.character(Pal.Gene.dynamique$Gene),
Pal.gostres organism = "mmusculus", ordered_query = F,
multi_query = F, significant = T, exclude_iea = T,
measure_underrepresentation = F, evcodes = T,
user_threshold = 0.05, correction_method = "fdr",
domain_scope = "annotated", custom_bg = NULL,
numeric_ns = "", sources = c("GO:MF", "GO:BP"), as_short_link = F)
write.table(apply(Pal.gostres$result, 2, as.character),
"Pal.gostres.csv", sep = ";", quote = F, row.names = F)
<- Pal.gostres$result[Pal.gostres$result$term_id %in% c("GO:0008630", "GO:0030330", "GO:0031571", "GO:0006974", "GO:0006977",
DNA_damage_GOterm "GO:0044773", "GO:0042771", "GO:0042770", "GO:2001021", "GO:1902229"),]
c(1,2,3,5,6,7,11)] DNA_damage_GOterm[,
#date
format(Sys.time(), "%d %B, %Y, %H,%M")
## [1] "13 mai, 2022, 16,48"
#Packages used
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=fr_FR.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=fr_FR.UTF-8
## [5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8
## [7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] splines stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] wesanderson_0.3.6 cowplot_1.1.1 ggExtra_0.9
## [4] RColorBrewer_1.1-2 dplyr_1.0.7 seriation_1.3.1
## [7] gprofiler2_0.2.1 monocle_2.22.0 DDRTree_0.1.5
## [10] irlba_2.3.3 VGAM_1.1-5 ggplot2_3.3.5
## [13] Biobase_2.54.0 BiocGenerics_0.40.0 Matrix_1.4-1
## [16] princurve_2.1.6 SeuratObject_4.0.4 Seurat_4.0.5
##
## loaded via a namespace (and not attached):
## [1] plyr_1.8.6 igraph_1.2.11 lazyeval_0.2.2
## [4] densityClust_0.3 listenv_0.8.0 scattermore_0.7
## [7] fastICA_1.2-3 digest_0.6.29 foreach_1.5.1
## [10] htmltools_0.5.2 viridis_0.6.2 fansi_0.5.0
## [13] magrittr_2.0.2 tensor_1.5 cluster_2.1.3
## [16] ROCR_1.0-11 limma_3.50.0 globals_0.14.0
## [19] matrixStats_0.61.0 docopt_0.7.1 spatstat.sparse_2.0-0
## [22] colorspace_2.0-2 ggrepel_0.9.1 xfun_0.28
## [25] RCurl_1.98-1.5 sparsesvd_0.2 crayon_1.4.2
## [28] jsonlite_1.7.2 spatstat.data_2.1-0 survival_3.2-13
## [31] zoo_1.8-9 iterators_1.0.13 glue_1.5.1
## [34] polyclip_1.10-0 registry_0.5-1 gtable_0.3.0
## [37] leiden_0.3.9 future.apply_1.8.1 abind_1.4-5
## [40] scales_1.1.1 pheatmap_1.0.12 DBI_1.1.1
## [43] miniUI_0.1.1.1 Rcpp_1.0.8 viridisLite_0.4.0
## [46] xtable_1.8-4 reticulate_1.22 spatstat.core_2.3-1
## [49] htmlwidgets_1.5.4 httr_1.4.2 FNN_1.1.3
## [52] ellipsis_0.3.2 ica_1.0-2 farver_2.1.0
## [55] pkgconfig_2.0.3 sass_0.4.0 uwot_0.1.10
## [58] deldir_1.0-6 utf8_1.2.2 labeling_0.4.2
## [61] tidyselect_1.1.1 rlang_0.4.12 reshape2_1.4.4
## [64] later_1.3.0 munsell_0.5.0 tools_4.2.0
## [67] generics_0.1.1 ggridges_0.5.3 evaluate_0.14
## [70] stringr_1.4.0 fastmap_1.1.0 yaml_2.2.1
## [73] goftest_1.2-3 knitr_1.36 fitdistrplus_1.1-6
## [76] purrr_0.3.4 RANN_2.6.1 pbapply_1.5-0
## [79] future_1.23.0 nlme_3.1-153 mime_0.12
## [82] slam_0.1-49 compiler_4.2.0 plotly_4.10.0
## [85] png_0.1-7 spatstat.utils_2.2-0 tibble_3.1.6
## [88] bslib_0.3.1 stringi_1.7.6 highr_0.9
## [91] lattice_0.20-45 HSMMSingleCell_1.14.0 vctrs_0.3.8
## [94] pillar_1.6.4 lifecycle_1.0.1 spatstat.geom_2.3-0
## [97] combinat_0.0-8 lmtest_0.9-39 jquerylib_0.1.4
## [100] RcppAnnoy_0.0.19 bitops_1.0-7 data.table_1.14.2
## [103] httpuv_1.6.3 patchwork_1.1.1 R6_2.5.1
## [106] promises_1.2.0.1 TSP_1.1-11 KernSmooth_2.23-20
## [109] gridExtra_2.3 parallelly_1.29.0 codetools_0.2-18
## [112] MASS_7.3-56 assertthat_0.2.1 withr_2.4.3
## [115] qlcMatrix_0.9.7 sctransform_0.3.2 mgcv_1.8-40
## [118] parallel_4.2.0 grid_4.2.0 rpart_4.1.16
## [121] tidyr_1.1.4 rmarkdown_2.11 Rtsne_0.15
## [124] shiny_1.7.1
Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France, matthieu.moreau@inserm.fr↩︎